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Abstract

Background

Medical imaging diagnosis can be challenging due to low-resolution images caused
by machine artifacts and patient movement. Researchers have explored algorithms
and mathematical insights to enhance image quality and representation. One com-
mon task is segmentation, which requires the detection or localization of diseases
around the tissue. New approaches and models using artificial intelligence, specifi-
cally computer vision, have been developed to improve the traditional methods that
have not been entirely effective. Since the publication of the U-Net model paper,
researchers have focused on building new model architectures to segment medical
images more effectively. The Transformers model, a core technology behind many
AI applications today, has been a game-changer. The Attention Gate was intro-
duced in a paper and used with the U-Net model to increase performance. However,
it did not solve certain computational cost issues and led researchers to investigate
how to improve the Attention Gate in a different way while maintaining the same
structure.

Aim

The aim was to improve the existing Attention Gate used in U-Net for medical
image segmentation. The goal was to reduce the computational cost of training the
model, improve feature extraction, and handle the problem of matrix multiplication
used in CNN for feature extraction

Method

The Attention Filter Gate was developed to improve upon the Attention Gate. In-
stead of learning from the spatial domain, the model was converted to the frequency
domain using the Fast Fourier Transformation (FFT). A weighted learnable matrix
was used to filter features in the frequency domain, and FFT was implemented be-
tween up-sampling and down-sampling to reduce matrix multiplication. The method
tackled computational cost, complexity algorithm, throughput, latency, FLOP, and
enhanced feature extraction.

Results

Describe the main results of after finishing some Quantitative results empty for now



Conclusion

This thesis investigates the Attention Filter Gate to address problems such as com-
putational cost and feature extraction, providing an alternative approach to medical
image segmentation that is both efficient and effective. The method enhances fea-
ture extraction to reduce information loss between the encoder and decoder, and
it provides a potential solution for throughput, latency, FLOP, and algorithm com-
plexity issues. The Attention Filter Gate improves on the existing Attention Gate
with intuitive tricks not addressed by previous methods.

Keywords:

Medical Segmentation, Neural networks, Transformers, U-Net model, Attention
Gate , Fast Fourier Transformation (FFT),
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2 Introduction

2.1 Motivation

MRI has become the gold standard technique for precisely identifying patients’ car-
diac structures and etiology, guiding diagnostic and therapy decisions, due to its high
picture quality, great soft-tissue contrast, and lack of ionizing radiation [2]. The left
atrium (LA) is a critical component within the heart whose precise segmentation
from medical images is critical for a variety of therapeutic applications, including
cardiac illness diagnosis and therapy planning. The LA cavity has a relatively lim-
ited capacity, is confined by a thin atrial wall, and has a complicated structure
[3]. Furthermore, the anatomical components around the atria have comparable
intensities, which might confuse some segmentation algorithms [4].

As a result, analyzing atrial structures and determining and quantifying fibrosis
distribution is difficult when utilizing manual atrial segmentation, which is a time-
consuming, labor-intensive, and error-prone method [5]. Image segmentation of
the left atrium (LA) can aid in overcoming the obstacles that stand in the way of
accurate and effective diagnosis and assessment. LA segmentation measures atrial
size and function, which are important imaging markers for several cardiovascular
disorders including atrial fibrillation, stroke, and diastolic dysfunction. Currently,
LA segmentation is done manually, which is time-consuming and observer-dependent
as shown in the following Figure 2.1

Figure 2.1: A Sample of the left atrium (LA) segmentation from DaTaset

Image segmentation is the process of dividing an image into multiple segments or
regions that correspond to different objects or parts of the image, such as grayscale,
color, spatial texture, and geometric shapes. The old and new methods of image
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segmentation differ in terms of the techniques and algorithms used to perform this
process [6].

Older methods of image segmentation typically relied on simple thresholding or
clustering techniques, which worked by assigning pixels to different segments based
on their intensity or color values. These methods could be effective in certain cases,
but they were often limited by their inability to handle complex or noisy images
[7, 8].

In recent years, new methods of image segmentation have emerged that rely on
more advanced algorithms such as deep learning and computer vision techniques.
However, the success rate was dependent on the availability of datasets for training.
These methods are based on the use of neural networks and other machine learning
techniques to identify patterns and features in images that can be used to segment
them into different regions [9, 10].

One example of a new method of image segmentation is the use of convolutional
neural networks (CNNs). These networks are trained on large datasets of labeled
images, allowing them to learn to recognize different objects and features in images.
Once trained, they can be used to segment new images by identifying the regions
that correspond to different objects or parts of the image [11].

Another example of a new method of image segmentation is the use of superpixel
segmentation. This technique works by grouping similar pixels together into larger
regions or ”superpixels” based on their color and texture features. This can be a
more efficient way of segmenting images, as it reduces the number of individual
pixels that need to be analyzed [11, 12].

Overall, while older methods of image segmentation can still be effective in cer-
tain cases, new methods based on deep learning and computer vision techniques
offer more powerful and flexible tools for analyzing complex images, especially after
owing hardware’s considerable capabilities in image processing tasks [6, 8].

Left atrium (LA) segmentation is an important step in the analysis of cardiac
magnetic resonance imaging (MRI) data for assessing the risk of atrial fibrillation
and planning for ablation therapy [13, 14]. Many methods have been introduced
for left atrium segmentation, like the Kalman filter, which shows promising results
by handling the image noise to improve segmentation [15]. Noise can affect the
quality of segmentation by blurring edges and boundaries between different regions
of interest, introducing false contours.

The use of annotated 3D MRI data is essential for machine learning models and a
crucial step for accurate network learning to extract special features from the image
[16, 8]. Also, left atrium segmentation is a crucial goal after ablation therapy for
those suffering from atrial fibrillation, with different LA shapes and sizes, and poor
image quality, atrial segmentation can be challenging, especially using segmentation
methods that can produce noise in images [15, 17].

In image segmentation, an attention filter is a technique used to improve the
accuracy of the segmentation results by selectively focusing on specific regions of
the image [18, 19]. The attention filter works by assigning different weights to the
input image pixels based on their importance in the segmentation task. This weight
assignment is typically learned by a neural network during the training phase [18].
The network learns to identify the relevant image features and assigns higher weights
to those pixels that are more likely to be part of the object of interest [18]. The
attention filter can be applied at various stages of the image segmentation pipeline,
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such as during the feature extraction, pre-processing, or post-processing stages. In
some cases, the attention filter is also used to filter out noise or unwanted image
artifacts [19].

2.2 Problem description

The field of medical imaging faces challenges in accurately diagnosing and analyzing
diseases due to various factors, including low-resolution images caused by machine
artifacts and patient movement. One specific task in medical imaging is image
segmentation, which involves the identification and localization of diseases or regions
of interest within the tissue. Traditional segmentation methods have proven to be
inadequate in achieving optimal results.

To address these limitations, researchers have turned to artificial intelligence
techniques, particularly computer vision, to improve the effectiveness of medical
image segmentation. The U-Net model, introduced in a seminal paper, has demon-
strated significant advancements in this area. However, despite its success, the
U-Net model still faces computational cost issues during training.

One technique used to enhance the U-Net model is the Attention Gate, which
selectively focuses on relevant image features to improve segmentation performance.
While the Attention Gate has shown promise, it has not fully resolved the compu-
tational cost challenges. Consequently, there is a need to explore alternative ap-
proaches to improve the Attention Gate’s performance while maintaining its struc-
ture.

In this Thesis, we aim to develop a new approach called Filter Attention Gate
we used within the U-Net model for medical image segmentation. Specifically, we
seek to reduce the computational cost involved in training the model and enhance
the feature extraction process, addressing the problem of matrix multiplication used
in convolutional neural networks based on Fast Fourier Transformation. By tackling
these challenges, we aim to provide an efficient and effective solution for medical
image segmentation, ultimately improving diagnostic accuracy and patient care.

2.3 Aim

The aim of this Thesis is to develop a new mechanism called Filter Attention Gate
within the U-Net model for medical image segmentation. The primary goal is to
address the computational cost associated with training the model while improving
feature extraction and overcoming the challenges posed by matrix multiplication
in convolutional neural networks used for feature extraction. By achieving these
objectives, this research aims to provide a simpler yet computationally efficient
algorithm for medical image segmentation, ultimately enhancing the accuracy of
disease detection and localization in medical imaging.

2.4 Objectives

The objectives of this Thesis are as follows:

1. Develop and improve Filter Attention Gate Based on FFT for medical image
segmentation.
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2. Reduce the computational cost associated with training the model.

3. Enhance feature extraction between the encoder and decoder.

4. Address the problem of matrix multiplication in CNN which Attention Gate
used for feature extraction.

5. Provide Simple yet computationally efficient algorithm integrated within U-Net
model

2.5 Study questions

In this thesis, we aim to address the following research questions:

1. How can the computational cost of training the U-Net model for medical image
segmentation be reduced?

2. How does the proposed Filter Attention Gate mechanism compare to the ex-
isting Attention Gate in terms of computational efficiency and segmentation
performance?

3. What impact does the integration of Fast Fourier Transformation (FFT) in the
Filter Attention Gate have on the overall efficiency and effectiveness of medical
image segmentation?

By addressing these research questions, this thesis aims to contribute to the
field of medical image segmentation by developing a novel mechanism that reduces
computational costs, improves feature extraction, and enhances the accuracy of
disease detection and localization.

2.6 Delimitations

The delimitations of this Thesis are as follows:

• The proposed method will be evaluated on a specific dataset or datasets.

• The focus will be on improving the Filter Attention Gate within the U-Net
model.

• The computational cost reduction will be assessed based on specific metrics.

• The feature extraction improvement will be measured through quantitative
analysis.

• one common limitation comes with Hardware Resourecs that wil allows us yo
run full the model Potienlial

• The thesis Study will not cover other aspects of medical image segmentation
beyond the Attention Gate improvement.
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3 Theory

3.1 Related Work

Biomedical 2D image segmentation has achieved remarkable accuracy with the use
of Convolutional Neural Networks (CNNs), comparable to human performance [20].
Building on this success, researchers have explored the application of 3D CNNs for
biomedical segmentation tasks [21, 22, 23].

The original U-Net architecture is designed for 2D image segmentation, and
similar Dense Neural Network architectures have been developed for full heart seg-
mentation [20]. To extend U-Net to 3D segmentation, the 3D U-Net was introduced
by Cicek et al. [22]. One approach to process volumetric data is to take three
perpendicular 2D slices as input and combine the multi-view information for 3D
segmentation [24].

Another approach is to directly replace the 2D operations in the original U-Net
with their 3D counterparts [20]. This 3D U-Net has been applied to multi-class
whole heart segmentation using MR and CT data [21]. However, due to memory
limitations of GPUs, these methods have either downsampled the input 3D data,
resulting in reduced resolution, or predicted subvolumes of the data [25, 26, 27].

Some methods adopt a two-stage approach, where regions of interest (ROI) are
first extracted using a localization network and then applied to the segmentation
U-Net [28]. This method utilizes two stages of 3D U-Nets.

In our work, we focus on utilizing the 3D U-Net architecture to segment 3D
volumes of the whole heart obtained from 4D flow MRI, which have been previously
segmented using multi-atlas-based methods [29, 28, 21].

Automated medical image segmentation has gained significant attention in the
image analysis community due to the labor-intensive and error-prone nature of man-
ual labeling [30, 31]. CNNs, particularly U-Net, have shown promising results in
tasks such as cardiac MR segmentation [30] and cancerous lung nodule detection
[25], approaching near-radiologist level performance.

However, when target organs exhibit large inter-patient variation in shape and
size, fully convolutional networks (FCNs) and U-Net often rely on multi-stage cas-
caded CNNs [21, 25, 10, 24, 27, 28]. This cascade approach extracts ROIs and
performs dense predictions on the selected regions. Nonetheless, this strategy leads
to redundant resource usage and model parameters [31, 24, 27, 28]. To address this
issue, attention gates (AGs) have been proposed as a simple yet effective solution
[21, 24, 27, 28]. CNN models equipped with AGs can be trained from scratch similar
to FCN models, and the AGs learn to focus on target regions automatically.

In our method, we propose a novel mechanism called the Filter Attention Gate,
integrated within the U-Net model, for medical image segmentation. The main
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objective is to address the computational cost associated with model training, im-
prove feature extraction, and overcome the challenges posed by matrix multiplica-
tion in convolutional neural networks. By achieving these goals, our research aims
to provide a computationally efficient algorithm for medical image segmentation,
ultimately enhancing the accuracy of disease detection and localization in medical
imaging.

3.1.1 Semantic Segmentation

Semantic segmentation is the task to split a digital image into multiple segments
where each segment represents a certain object. For semantic segmentation, multiple
objects of the same class are not distinguished differently, which is not the case for
instance segmentation. This report is focused on semantic segmentation. This
section will discuss different methods used for Semantic segmentation starting with
classical methods then moving to deep learning models.

3.1.2 Classical Methods

1. Manual Thresholding
This method depends mainly on a threshold value that splits the image to a binary
image where each pixel is either zero or one. Multiple thresholds are needed when
the number of classes is larger than two. This method needs expert interaction to
define those thresholds and it also lacks generality as it is impossible to define a
threshold for each class. 2. Clustering Methods
Clustering is to group similar pixels into the same cluster/label. There are different
algorithms for clustering. However, the most known algorithm is called K-means
where ’K’ represents the number of clusters in the image. The algorithm is based
on the iterative method as it assumes k centroids at the beginning of the k clusters.
Then, it tries to find pixels that belong to each cluster by calculating the distance
between all the pixels and the centroids of the clusters. The distance function is the
difference between the pixel values. When two pixels have similar grayscale values,
the distance between them will be small. This indicates that these two pixels should
be clustered into the same cluster. On the other hand, when the distance is large,
it indicates that these two pixels belong to different clusters. Finally, it calculates
new k centroids according to the pixels in each cluster. The cluster centroid is the
average grayscale value of the pixels in this cluster. The loop goes over and over
until it saturates when centroids do not change. This method also lacks generality
as it needs variable k to be defined for each image. Moreover, it might produce the
wrong results because of bad initialization.

3. Histogram-Based Methods
A histogram is built using all pixels of the image, then peaks and valleys make it
easier to distinguish different objects. The algorithm could be applied to multiple
images at the same time in the same way. However, it becomes harder to split the
image to classes when there are no peaks or valleys or they are in a small range. 4.
Edge Detection
Edge detection techniques are used to identify edges in the image. These techniques
are built on heuristics that look for discontinuity in the image. Although the result
is groups of disconnected edges, with some heuristics they can form objects and
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shapes. So, these techniques are used as a base for segmentation. This method
depends on heuristics which makes it not viable for general cases.

3.2 Feed Forward Neural Network

In this section, we will delve into the topic of single-layer neural networks, which
includes some of the classical approaches to neural computing and learning prob-
lems. We will first discuss the representational power of single-layer networks and
their learning algorithms, providing examples of their usage. Subsequently, we will
address the representational limitations encountered by single-layer networks.

Two classical models will be described in the first part of this chapter: the Per-
ceptron, proposed by Rosenblatt in the late 1950s [32] An artificial neural network
is an application that is non-linear with respect to its parameters θ, and it asso-
ciates an input x with an output y = f(x, θ). For simplicity, we assume that y is
unidimensional, although it could also be multi-dimensional. The function f has
a specific form that will be explained. Neural networks can be used for regression
or classification tasks. The parameters θ are estimated from a learning sample,
and the optimization function is non-convex, which can result in finding local min-
imizers. The success of neural networks stems from the universal approximation
theorem proposed by Cybenko (1989) and Hornik (1991) [32, 33]. Furthermore,
LeCun (1986) introduced an efficient method called backpropagation of the gradi-
ent, which enables the computation of gradients for neural networks and facilitates
the attainment of local minimizers for quadratic criteria [34]. The use of neural
networks, with their flexibility in representation and their efficient optimization
techniques, has contributed significantly to the advancement of artificial intelligence
and machine learning.

3.2.1 Artificial Neuron

An artificial neuron, denoted as fj, is a function of the input x = (x1, . . . , xd)
weighted by a vector of connection weights wj = (wj,1, . . . , wj,d), along with a neuron
bias bj. This neuron is associated with an activation function φ, and its output yj
is computed as follows:

yj = fj(x) = φ

(
d∑

i=1

wj,ixi + bj

)
. (3.1)

Various activation functions can be considered for the artificial neuron. Some
commonly used activation functions include:

• The identity function:
φ(x) = x (3.2)

• The sigmoid function (or logistic function):

φ(x) =
1

1 + exp(−x)
(3.3)
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• The hyperbolic tangent function :

tanh : φ(x) =
exp(x) − exp(−x)

exp(x) + exp(−x)
=

exp(2x) − 1

exp(2x) + 1
(3.4)

• The hard threshold function:

φβ(x) =

{
1, if x ≥ β

0, otherwise
(3.5)

• The Rectified Linear Unit (ReLU) activation function:

φ(x) = max(0, x) (3.6)

The artificial neuron can be represented schematically as follows, where Σ =
⟨wj, x⟩ + bj:

Figure 3.1: Schematic representation of an artificial neuron.

These activation functions introduce non-linearity into the neural network, en-
abling it to learn complex patterns and make non-linear decisions. The choice of
activation function depends on the nature of the problem and the desired behavior
of the neural network.

3.2.2 Activation and output rules

after we introduce a general Overview of Neural networks we need to understand
the connectivity between neurons which leads us to activation functions [35] [33],
moreover, We also need a rule which gives the effect of the total input on the

activation of the unit. We need a function Fk which takes the total input s
(t)
k and

the current activation y
(t)
k and produces a new value of the activation of the unit k:

y
(t+1)
k = Fk(y

(t)
k , s

(t)
k ) (3.7)

Often, the activation function is a non-decreasing function of the total input of
the unit:

y
(t+1)
k = Fk(s

(t)
k ) (3.8)

In some cases, the output of a unit can be a stochastic function of the total input
of the unit. In that case, the activation is not deterministically determined by the
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neuron input, but the neuron input determines the probability p that a neuron gets
a high activation value:

p(yk = 1|sk) = σ(sk) (3.9)

Historically, the sigmoid function was mostly used as the activation function since
it is differentiable and allows us to keep values in the interval [0, 1]. Nevertheless,
it has a problem: its gradient is very close to 0 when |x| is not close to 0. Figure
3 represents the sigmoid function and its derivative. With neural networks with
a high number of layers (which is the case for deep learning), this causes trouble
for the backpropagation algorithm to estimate the parameters (backpropagation is
explained in the following). This is why the sigmoid function was supplanted by the
rectified linear function. This function is not differentiable at 0, but in practice, this
is not really a problem since the probability to have an entry equal to 0 is generally
null. The ReLU function also has a sparsification effect. The ReLU function and
its derivative are equal to 0 for negative values, and no information can be obtained
in this case for such a unit. This is why it is advised to add a small positive bias
to ensure that each unit is active. Several variations of the ReLU function are
considered to make sure that all units have a non-vanishing gradient [36] and that
for x < 0, the derivative is not equal to 0. Namely

φ(x) = max(x, 0) + αmin(x, 0) (3.10)

where α is either a fixed parameter set to a small positive value, or a parameter
to estimate.

Figure 3.2: Various activation functions for a unit

3.3 Multi-Layer Perceptron

A multi-layer perceptron [37] (or neural network) is a structure composed of several
hidden layers of neurons, where the output of a neuron in one layer becomes the
input of a neuron in the next layer. Additionally, the output of a neuron can also
be the input of a neuron in the same layer or in previous layers (this is the case
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for recurrent neural networks). The last layer called the output layer, may apply a
different activation function compared to the hidden layers, depending on the type
of problem at hand, such as regression or classification. Figure 4 represents a neural
network with three input variables, one output variable, and two hidden layers.

Multi-layer perceptrons shown in Fig Figure.3.3 have a basic architecture where
each unit (or neuron) in a layer is connected to all the units in the next layer but
has no direct connection with the neurons in the same layer. The architectural
parameters include the number of hidden layers and the number of neurons in each
layer. The choice of activation functions is also left to the user. For the output
layer, as mentioned earlier, the activation function is generally different from the
ones used in the hidden layers.

Figure 3.3: basic neural network multi-layer perceptron

In regression tasks, no activation function is applied to the output layer. For
binary classification, where the output provides a prediction of P (Y = 1/X) (since
this value is in the range [0, 1]), the sigmoid activation function is commonly used.
In multi-class classification, the output layer contains one neuron per class i, giving
a prediction of P (Y = i/X). The sum of these predicted probabilities should be
equal to 1. The multidimensional softmax function is typically employed for this
purpose:

softmax(z)i =
exp(zi)∑
j exp(zj)

Let us summarize the mathematical formulation of a multi-layer perceptron with
L hidden layers. We set h(0)(x) = x.

For k = 1, . . . , L (hidden layers):

a(k)(x) = b(k) +W (k)h(k−1)(x)

h(k)(x) = φ(a(k)(x))

For k = L+ 1 (output layer):

a(L+1)(x) = b(L+1) +W (L+1)h(L)(x)

h(L+1)(x) = ψ(a(L+1)(x)) := f(x, θ)

where φ is the activation function and ψ is the output layer activation function
(e.g., softmax for multiclass classification). At each step, W (k) is a matrix with
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the number of rows equal to the number of neurons in layer k and the number of
columns equal to the number of neurons in layer k − 1.

In the subsequent step, we define a loss function and apply backpropagation to
update the weights. The error in the output of the neural network is defined by
the loss function. The loss function used depends on the application, for instance, a
classification, regression, or in our case, segmentation problem. An assumption can
be made that the error is normally distributed about the prediction y. Hence, the
Maximum Likelihood Estimate (MLE) for the normal distribution can be optimized
by maximizing the Mean Squared Error (MSE), where y denotes the true value and
ŷ denotes the estimated value.

e(ŷ) =
1

n

n∑
i=1

(ŷ − y)2

The gradient can now be computed with respect to the corresponding weights
and updated. The learning rate α decides the magnitude of change in the weights
after each iteration or epoch, i.e., one pass of the neural network training over the
training dataset. For the purpose of the application, more complex optimizers along
with momentum are used for the training to converge faster to a solution. The
equations and process detailing the weight update mechanism are referred to in
[21]. One gradient update can be shown in the gradient of the error function with
respect to its weights:

∇e =

(
∂e

∂wn

,
∂e

∂wn−1

, . . . ,
∂e

∂w1

)
The chain rule of partial derivatives can be used to compute the gradient. For

w2, the gradient is:
∂e

∂w2

=
∂e

∂ŷ
· ∂ŷ
∂h

· ∂h
∂w2

Hence, the weight can be updated according to the equation:

w′
2 = w2 − α⊙ ∂e

∂w2

where ⊙ denotes the element-wise product and α is the learning rate that decides
the magnitude of change of the weight update. Sometimes, updates to the structure
of the neural network may be required, which changes the analytical solution for
gradient updates. The application of numerical optimization techniques can allow
for such a change without requiring the derivation of the analytical solution for
such a gradient update. Deep neural networks are susceptible to the vanishing
gradient/exploding gradient problem [33], which is the reason for the application of
more complex types of neural networks.

3.4 Convolutional Neural Networks

Inputs to the neural network may have features that are highly correlated to the
features adjacent to them. This is generally observed in image classification and
segmentation problems. Convolutional Neural Networks (CNNs) can be used for
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extracting information in such cases where feature extraction from images is required
for later tasks such as regression, classification, and segmentation. In theory, a
conventional feed-forward neural network is also capable of image processing, with
the drawback of a higher number of parameters required to be learned as compared
to a CNN. Instead of using a weight for each pixel of the image, a CNN uses a filter
over the inputs i.e. a sliding window with a certain stride over the pixel intensities
to create an intermediary output that is a function of the input and the filter, this
process termed convolution Figure.3.4.

Figure 3.4: Illustrative 2D convolution: The dot product of input and filter results in
the output

The intensity/brightness of each pixel of the image (voxel in 3D case) is generally
rescaled and mapped to a range such as (0, 1). This can be seen in Figure.3.4 as an
example. It is noted that zero-padding may be performed on the input to allow for
convolution involving all the input pixel or voxel intensities, i.e., 0-intensity pixels
are added around all the edges and corners. Other forms of padding are also adopted
depending on the application. During each convolution step as described above, a
product of the input and filter is computed. In the case of Figure.3.4 with 2D inputs
or pixels, the input shape is 1 × 4 and 4 × 1, which results in an output of shape
1 × 1. The stride of 1 moves the sliding window of 2 × 2 to the next position with
the output being computed on the right-hand side. Increasing the strides will result
in a smaller output size; it can be noted that the size of the output is always smaller
than the input size.

The convolution operation in the 2D space can be defined as follows [38]:

yij =
m−1∑
a=0

m−1∑
b=0

x1+as,j+bsFa,b

where x denotes the input at indices i and j, F denotes the filter, m denotes the
size of the filter, and s is the stride.

For the purpose of extracting features from images, edges are of interest. There-
fore, a difference between adjacent pixels/voxels can determine the edge, as in the
case of foreground vs background. Size reduction of the input is also a concern for
faster image processing and can be done by a method called pooling. An illustrative
example of max-pooling can be seen in Figure.3.5.

The concept of pooling can also be described as a sliding window of a mathemati-
cal operation, such as the maximum value (max), applied in each case. Generally, no
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overlap is considered between the selected regions. This can result in the edge cases
being overlooked, but padding may also be used. Settings related to pooling and
filter size are both arbitrarily decided and hence considered to be hyperparameters
of the neural network.

Figure 3.5: Maxpooling is being performed on the input by a window of size 2 ˆ 2. The
cases with edges are either padded with zeros or just ignored

The filter shown in Figure.3.4 is a high-pass filter. A convolutional neural network
(CNN) would be of limited use if it could only learn with one filter, meaning it
would be able to extract only one type of feature from the input. For instance, an
edge detection filter works where the intensity changes drastically (e.g., from black
to white). Hence, multiple independently operating filters are used for training.
In image processing, one filter is used for each of the RGB channels if available;
otherwise, the number of filters is decided by the modeler. The construction of a
CNN involves multiple layers of filtering and pooling, which provide a feature set to
the network resembling a feed-forward network for the purpose of the end goal task,
such as classification, regression, or segmentation.

3.5 Upsampling

For a neural network to generate images or image maps such as in the case of se-
mantic segmentation, it generally involves the application of upsampling from a low
resolution to a higher resolution. There are many different methods to perform an
upsampling operation such as nearest neighbor interpolation, linear interpolation,
bilinear interpolation, trilinear interpolation, bicubic interpolation, and various oth-
ers found in literature [35]. Let’s go backward in Figure.3.4 from the section 3.3 , if
we want to associate 1 value to 9 other values in a matrix, it will be termed a one-
to-many relationship. This is similar to going backward in a convolution operation
Figure.3.6
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Figure 3.6: Illustrative Upsampling - Going backward of a convolution

3.5.1 Convolution operation

When a convolution operation is applied on a 4x4matrix using a 3x3 kernel without
padding and a stride of 1, the output will be a 2x2matrix. The operation in Fig-
ure.3.7 computes the sum of element-wise matrix multiplication between the input
and kernel. This can be done only 4 times in the illustrative example

Figure 3.7: Illustrative Convolution operation

3.5.2 Transposed Convolution

A convolution operation can be represented as a kernel matrix that is arranged in
the form of matrix multiplication to perform convolution operations. Shown in the
Figure.3.8

14



Figure 3.8: Illustrative Convolution operation

This kernel can be arranged as in Figure.3.9

Figure 3.9: Illustrative Convolution matrix (4,16)

3.6 Non-parametric Activation Functions

Complex-valued neural networks (CVNNs) [39] are a powerful modeling tool for
domains where data can be naturally interpreted in terms of complex numbers.
However, several analytical properties of the complex domain (e.g., holomorphicity)
make the design of CVNNs a more challenging task than their real counterpart.
In this work, we consider the problem of flexible activation functions (AFs) in the
complex domain, i.e., AFs endowed with sufficient degrees of freedom to adapt
their shape given the training data. While this problem has received considerable
attention in the real case, a very limited literature exists for CVNNs, where most
activation functions are generally developed in a split fashion (i.e., by considering
the real and imaginary parts of the activation separately) or with simple phase-
amplitude techniques. In our work, we propose the use of our own Attention Filter
Gate, which combines both Softmax and Sigmoid activation functions to handle
frequencies in the Frequency Domain before taking the inverse of FFT. We will
provide a detailed explanation of this method in Section ??.

3.6.1 Sigmoid Activation Function

As stated in the section, choosing a proper activation function in Equation 3.11 is
more challenging than in the real case due to Liouville’s theorem, which states that
the only complex-valued functions that are bounded and analytic everywhere are
constants. Therefore, in practice, one needs to choose between boundedness and
analyticity. Before the introduction of the sigmoid activation [40], most activation
functions in the real case were bounded. As a result, initial approaches to design

15



CVNNs often preferred non-analytic functions to preserve boundedness. One com-
mon approach was to apply real-valued activation functions separately to the real
and imaginary parts [41].

g(z) = gR(Re(z)) + igR(Im(z)) (3.11)

Here, z represents a generic input to the activation function in Equation 3.11,
and gR(·) denotes some real-valued activation function, such as the sigmoid (Equa-
tion 3.14). This approach is known as a split activation function. An example
of the split-tanh activation function, showing the magnitude and phase variations
when changing the activation, is illustrated in Figure 3.10. Early proponents of this
approach can be found in [41] and [42].

Another class of non-analytic activation functions commonly used is the phase-
amplitude (PA) functions popularized by [43, 44]:

g(z) =
z

c+ |z|
r

(3.12)

g(z) = tanh

(
|z|
m

)
exp {iφ(z)} (3.13)

Figure 3.10: Example of split activation function with SigmoidComplex(·) processing
both the real and imaginary parts of the input. (a) Magnitude of the output. (b) Phase
of the output.

Here, φ(z) represents the phase of z, while c, r, and m are positive constants
typically set to 1. PA functions can be seen as a natural generalization of real-valued
squashing functions, such as the sigmoid, as they maintain a bounded magnitude
while preserving the phase of z.

1. Code for the SigmoidComplex used in our method:

The following code snippet implements the SigmoidComplex function in Python:

1 class SigmoidComplex(nn.Module):

2 def __init__(self):

3 super(SigmoidComplex , self).__init__ ()

4

5 def forward(self , x):

6 if x.dtype == torch.complex64:
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7 # Calculate the magnitude of complex numbers

8 magnitude = torch.abs(x)

9

10 # Apply sigmoid activation function to the magnitude

11 sigmoid_magnitude = torch.sigmoid(magnitude)

12

13 # Normalize the complex numbers using the sigmoid

magnitude and the original phase

14 norm_real = sigmoid_magnitude * torch.cos(torch.angle(x))

15 norm_imag = sigmoid_magnitude * torch.sin(torch.angle(x))

16 normalized_complex = torch.complex(norm_real , norm_imag)

17

18 return normalized_complex

19

20 return torch.sigmoid(x)

The SigmoidComplex function is utilized in our method to process complex in-
puts. It incorporates the concept of complex-valued neural networks (CVNNs)
and is designed to apply a sigmoid activation function to complex numbers. It
follows the theorem of CVNNs, which states that the SigmoidComplex activa-
tion should be computed as follows:

2. Formalization of SigmoidComplex based on the theorem of CVNNs:

The SigmoidComplex function is defined as follows:

SigmoidComplex(x) =

{
σ(|x|) · cos(angle(x)), if x is complex,

σ(x), otherwise.
(3.14)

In this equation, σ(·) represents the sigmoid function, |x| denotes the mag-
nitude of the complex number x, and angle(x) represents the angle or phase
of x. The SigmoidComplex activation function takes a complex input x and
applies the sigmoid function to the magnitude while preserving the phase if x
is complex. If x is not complex (i.e., a real number), the sigmoid function is
applied directly.

The SigmoidComplex function is a fundamental component in our method for
handling complex-valued data within neural networks, providing a non-linear
activation that is well-suited for complex inputs.

3.6.2 Softmax Activation Function

In this subsection, we compare different approaches for designing neural networks
with softmax activation functions in their output layer. Specifically, we compare
a real-valued neural network that takes the real and imaginary components of the
coefficients as separate inputs, a complex-valued neural network (CVNN) with mod-
ReLU activation functions, and a CVNN employing the proposed split-KAF (Kernel
Activation Function).

For the CVNNs, we utilize a variation of the softmax function to handle complex-
valued activations, denoted as softmaxn(h), where h ∈ C represents the complex-
valued activations and C = 1 is the number of classes for our problem. The
softmaxn(h) function is defined as follows:
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softmaxn(h) =
exp

{∑C
t=1(⟨hn⟩2 + ∥hn∥2)

}
∑C

t=1 exp {(⟨ht⟩2 + ∥ht∥2)}
, (3.15)

where ⟨hn⟩ denotes the real part of the complex activation hn, and ∥hn∥ repre-
sents the imaginary part of hn.

To train the networks, we minimize the BCE-DICE Loss cross-entropy formula-
tion using the same optimizer. The BCE-DICE Loss is commonly used for segmen-
tation tasks and is adapted here to our problem.

Please note that the specific details of the optimizer used and the BCE-DICE
Loss formulation can be found in the respective references or documentation of the
methodology being employed.
Through our experiments, we observe that working in the complex domain and
training our Attention Filter Gate (AFG) using the proposed split-KAF. This ap-
proach leverages the benefits of complex-valued neural networks, allowing for more
expressive and accurate representations of complex data in the Frequency domain.

3.7 U-Net

The U-Net architecture, introduced by Ronneberger et al [10], is a convolutional
neural network commonly used for image segmentation tasks. It has been widely
adopted in various medical image analysis applications. U-Net addresses the chal-
lenge of training deep networks with a limited number of annotated samples. It
consists of a contracting path and a symmetric expanding path, enabling precise
localization and outperforming previous methods.

The U-Net architecture as shown in Figure.3.12 is built upon the fully convolu-
tional network presented in Long work. A significant modification is the use of a
large number of feature channels in the upsampling part. This allows the network
to propagate context information to higher-resolution layers. The contracting side
of the U-Net is symmetric to the expansive side, resulting in the characteristic U-
shaped architecture. Unlike traditional architectures, U-Net does not include fully
connected layers. Instead, it utilizes the valid parts of each convolution, ensuring
that the segmentation map contains only pixels for which full context is available in
the input image. The U-Net architecture has demonstrated excellent performance
in various segmentation tasks, particularly in medical imaging. Its ability to capture
both local and global information, along with its symmetric design, enables accurate
segmentation and precise localization of structures within the images.
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Figure 3.11: : U-Net architecture (illustrative for 32x32 pixels at lowest resolution). The
blue boxes represent a multi-channel feature map with the number of channels present on
top of each box. The size of the xy dimensions is at the bottom left of the box’s edge.
Copied feature maps are in white boxes. Each arrow denotes different operations

3.7.1 Tow Dimensional U-Net

A network for efficient Volumetric segmentation was first presented by Cicek et.
al.[? ]. We use the fully automated setup as referenced in the paper where we
assume that a sparsely annotated training set exists. Trained on this dataset, the
network segments new volumetric images. This network extends the U-Net as given
by Ronneberger et. al. by replacing 2D operations with the corresponding 3D
operations. Volumetric data is available in abundance in the biomedical industry.
Annotation of such data with segmentation labels comes with its cons, since only 2D
slices are shown, annotation of large volumes slice by slice is inefficient. Neighboring
slices mostly show the same information.

The first U-Net proposed is designed as a 2D architecture [10], while the network
proposed by Cicek et. al.[45] takes 3D volumes for input to process them with
corresponding 3D operations such as 3D convolutions, 3D max-pooling, and also 3D
upsampling layers. Deep Convolutional Neural Networks (CNNs) are the pinnacle
in performance for multi-class segmentation of medical images. However, the most
common problem when dealing
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Figure 3.12: U-Net architecture (illustrative for 32x32 pixels at lowest resolution). The
blue boxes represent a multi-channel feature map with the number of channels present on
top of each box. The size of the xy dimensions is at the bottom left of the box’s edge.
Copied feature maps are in white boxes. Each arrow denotes different operations

with high resolution and large 3D data, the volumes as input into the deep CNNs
have to be either cropped or downsampled due to limitations in memory and com-
putation. The above operations lead to loss of resolution and class imbalance in the
input data batches, thus downgrading the performances of segmentation algorithms.
Wang et. al. propose a two-stage modified U-Net framework applied to a variety of
multi-modal 3D cardiac images for full cardiac segmentation. Other efforts such as
introducing several auxiliary loss functions, anatomically constrained CNNs where
some nodes are constrained and shape priors are used, and Hierarchical 3D fully
convolutional networks for multi-organ segmentation. A 3D V-Net has also been
proposed where the network architecture is more like a V shape since some convo-
lution steps, copy and crop steps are skipped from the U-Net which can make it
faster. A novel cost function is used to optimize the hyperparameters

3.7.2 Uncertainty Estimation using a Bayesian 3D U-Net

While the sigmoid output or the last layer output of a U-Net can provide a measure
of uncertainty, it cannot be directly used as an accurate estimate. This is because the
sigmoid output values are dependent on the inferred samples being subjectively close
to the training distribution. Additionally, the activation function used in the last
layer squeezes the output, further limiting its suitability as an uncertainty estimate,
especially for samples that are far from the training distribution, such as deformed
or diseased parts of the heart. To address this limitation, Labonte et al. outlined
a method for performing variational inference in their work [46]. This approach
enables the estimation of uncertainty in Bayesian 3D U-Nets. Uncertainty estimation
is crucial for interpretability and validation purposes, as it provides insights into the
reliability and confidence of the segmentation results. The significance of uncertainty
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estimation is illustrated in Figure 3.12. Traditional deep neural networks lack the
capability to measure uncertainty, and their performance is highly dependent on the
similarity between the test set and the training dataset. When presented with a test
example that differs significantly from the training data, the network may produce
incorrect segmentation outputs due to the lack of uncertainty estimation.

Figure 3.13: Illustrative 3 Dimensional U-Net

By incorporating Bayesian principles and variational inference techniques into
the U-Net architecture, researchers have made significant progress in addressing the
challenge of uncertainty estimation. Bayesian 3D U-Nets provide a more robust and
reliable framework for segmentation tasks, especially in scenarios where accurate
uncertainty estimates are essential for decision-making and confidence assessment.

3.8 Loss Function

In deep learning, the choice of an appropriate loss function is crucial for training a
model effectively. When it comes to segmentation tasks, where the goal is to assign
a label to each pixel or voxel in an input image or volume, specialized loss functions
are commonly used. These loss functions are designed to measure the dissimilarity
between the predicted segmentation and the ground truth, guiding the model to
learn accurate segmentations.

One commonly used loss function for segmentation tasks is the pixel-wise cross-
entropy loss, also known as binary cross-entropy loss or softmax cross-entropy loss.
This loss function is well-suited for binary segmentation, where each pixel is classified
as either foreground or background. The pixel-wise cross-entropy loss calculates the
average cross-entropy loss over all pixels in the image.

Let’s denote the predicted segmentation map as P and the ground truth segmen-
tation map as G. Both P and G are matrices of the same size as the input image,
with each element representing the predicted or ground truth label of a pixel. For
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binary segmentation, the labels are typically encoded as 0 for background and 1 for
foreground.

The pixel-wise cross-entropy loss is defined as follows:

CrossEntropy(P,G) = − 1

N

N∑
i=1

[Gi log(Pi) + (1 −Gi) log(1 −Pi)]

where N is the total number of pixels, Gi is the ground truth label of the i-th pixel,
and Pi is the predicted probability of the i-th pixel belonging to the foreground
class.

This loss function penalizes the model for incorrect predictions, encouraging it to
produce high probabilities for the correct class and low probabilities for the incorrect
class. The logarithmic term ensures that the loss is higher when the predicted
probability deviates further from the ground truth label. By minimizing this loss,
the model learns to generate segmentation maps that closely match the ground
truth.

In addition to the pixel-wise cross-entropy loss, there are other loss functions
commonly used in segmentation tasks, depending on the specific requirements and
characteristics of the problem. For instance, when dealing with multi-class segmen-
tation, where each pixel can be assigned one of multiple class labels, the categorical
cross-entropy loss is often employed. This loss extends the binary cross-entropy loss
to handle multiple classes.

Furthermore, for tasks where spatial coherence and smoothness are desired in the
predicted segmentation, additional loss terms such as the dice loss or the Jaccard
loss can be incorporated. These losses measure the overlap between the predicted
and ground truth segmentations, encouraging the model to produce more accurate
and coherent segmentations.

3.8.1 Dice Loss

The Dice loss is another commonly used loss function in segmentation tasks. It
measures the overlap or similarity between the predicted and ground truth segmen-
tations. The Dice loss is particularly useful when dealing with imbalanced datasets,
where the number of background pixels far exceeds the number of foreground pixels.

The Dice loss is defined as follows:

DiceLoss(P,G) = 1 − 2
∑N

i=1PiGi+ ϵ∑
i = 1NPi2 +

∑
i = 1NG2

i + ϵ

where ϵ is a small constant added for numerical stability. The Dice loss ranges
from 0 to 1, with 0 indicating no overlap between the predicted and ground truth
segmentations, and 1 indicating perfect overlap.

The Dice loss encourages the model to generate segmentations that have high
overlap with the ground truth, promoting accurate segmentation of both foreground
and background regions. It is particularly effective when the foreground class is
small compared to the background class.

In practice, a common approach is to combine the cross-entropy loss and the
Dice loss to create a hybrid loss function. This combination takes advantage of the
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benefits of both loss functions, encouraging accurate pixel-wise classification while
also promoting spatial coherence and overlap with the ground truth.

Choosing an appropriate loss function depends on the specific requirements and
characteristics of the segmentation task. It is common to experiment with different
loss functions

3.8.2 Cross Entropy Loss

One commonly used loss function for segmentation tasks is the cross-entropy loss,
also known as the softmax cross-entropy loss. This loss function is well-suited for
multi-class segmentation, where each pixel can be assigned one of the multiple class
labels.

Let’s denote the predicted segmentation map as P and the ground truth segmen-
tation map as G. Both P and G are matrices of the same size as the input image,
with each element representing the predicted or ground truth label of a pixel. The
cross-entropy loss is defined as follows:

CrossEntropy(P,G) = − 1

N

N∑
i=1

C∑
c=1

Gic log(Pic)

where N is the total number of pixels, C is the number of classes, Gic is the
ground truth label of the i-th pixel for the c-th class, and Pic is the predicted
probability of the i-th pixel belonging to the c-th class. This loss function penalizes
the model for incorrect predictions and encourages it to produce high probabilities
for the correct class.

3.8.3 BEC-DICE Loss

In the field of segmentation, it is crucial to employ an effective loss function that
captures important features and preserves information in the spatial domain. In
this regard, we utilize a combination of the Binary Cross-Entropy (BCE) loss and
the Dice loss, referred to as the BCE-Dice loss. This hybrid loss function allows us
to leverage both spatial and label-wise information for accurate segmentation.

1. Binary Cross-Entropy (BCE) Loss: The BCE loss measures the disparity
between the predicted probability and the ground truth label. It is commonly
employed in binary classification tasks. The BCE loss is calculated by taking
the negative logarithm of the predicted probability for the correct label. The
formulation is given by Equation 3.17.

2. Dice Loss: The Dice loss quantifies the overlap between the predicted seg-
mentation and the ground truth segmentation. It is computed by evaluating
the ratio of twice the intersection of the two segmentations to the sum of the
pixels in both segmentations. The Dice loss aids in evaluating the similarity
between the predicted and ground truth segmentations. The mathematical
expression is provided by Equation 3.18.

By combining the BCE loss and the Dice loss, the BCE-Dice loss enables us to
capture both spatial and label-wise information during the segmentation task. The
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BCE loss encourages the model to correctly classify the pixels, while the Dice loss
motivates the model to accurately segment the regions.

The BCE-Dice loss is formulated as the sum of the BCE loss and the Dice loss,
as shown in Equation (5):

BCE-Dice Loss = BCE + Dice Loss (3.16)

where:

BCE(y, ŷ) = − 1

N

N∑
i=1

yi log(ŷi) + (1 − yi) log(1 − ŷi) (3.17)

Dice Loss(y, ŷ) = 1 − 2
∑N

i=1 yiŷi + ϵ∑N
i=1 yi +

∑N
i=1 ŷi + ϵ

(3.18)

In the above equations, y represents the ground truth, ŷ denotes the predicted
output, and ϵ is a small value added to prevent division by zero errors.

The BCE-Dice loss provides a comprehensive and effective approach for seg-
mentation tasks, allowing the model to capture both local and global information,
resulting in more accurate and reliable segmentation results.

3.9 Transformers

Transformers [47] has emerged as a powerful architecture in the field of AI, partic-
ularly in large language models (LLMs). They have made significant advancements
in various applications such as text generation and image synthesis. Companies like
Meta FAIR, OpenAI, and DeepMind have dedicated research departments to ex-
plore and enhance the capabilities of LLMs, with the goal of integrating them into
robotics and multi-modal interaction.

At a high level, Transformers are encoder-decoder architectures that excel in
mapping data representations across domains and reconstructing data. Initially de-
veloped for translation tasks, the Transformers architecture consists of an encoder
and a decoder. The encoder processes the input data and produces a fixed-length
vector representation, while the decoder takes this vector and generates the out-
put sequence. The models are trained together to maximize the conditional log-
likelihood of the output given the input.

In the original Transformer architecture, both the encoder and decoder consisted
of six identical layers. Each layer in the encoder had two sub-layers: a multi-head
self-attention layer and a feed-forward network. The self-attention layer computed
the output representation for each input token based on all input tokens. Residual
connections and layer normalization were applied to each sub-layer. The output
representation size of the encoder was 512.

In the decoder, the multi-head self-attention layer was modified to include a
masking mechanism. This masking ensured that the decoder could only attend to
tokens preceding the one it was trying to predict. Additionally, a third sub-layer was
introduced in the decoder, which involved multi-head attention over the encoder’s
outputs. It is important to note that these specific details have been modified in
various Transformer variations, such as BERT and GPT, which may focus solely on
the encoder or decoder components 3.14
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Figure 3.14: Transfomers Model Components

Transformers have revolutionized the field of AI by providing a flexible and pow-
erful architecture for handling sequential data and language tasks. Their ability to
capture dependencies between different elements of a sequence has led to significant
improvements in natural language processing and other related domains.

3.9.1 Self-Attention

Self-Attention is a mechanism used in neural networks, particularly in the Trans-
former model, to capture the importance of different words in a sentence or sequence.
The mathematical formula for Self-Attention is as follows:

Self-Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V

We think of the attention mechanism as a block in a neural network that allows
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us to focus more on relevant features in the text by assigning higher probabilities to
attend to previous or subsequent words. the Self-Attention Mechanism (SAM) was
created to improve sequential modeling performance by addressing the limitations of
recurrent and long-term memory in models such as LSTM and RNN. One of the key
achievements of SAM is the parallel processing of sequences, achieved by dividing
the process into Query, Key, and Value components. To illustrate how SAM works,
let’s consider the analogy of a database search using a look-up table. you might
wonder why the Query, Key, and Value have different meanings but still receive the
same input data. This is where SAM comes into play. It finds similarities between
the Query (Q) and Key (K), and then uses this information to operate on the Value
(V ). Now, let’s define the SAM formula in more depth.

Attention Mechanism ”Look at Each Other” in the Encoder,given a sequence
of input tokens x1, . . . ,xn, where each xi ∈ Rd, for 1 ≤ i ≤ n, the self-attention
mechanism outputs a sequence of the same length, y1, . . . ,yn. The learning process
is represented by the following equation:

Figure 3.15: Sequence of input tokens

Theorem 3.9.1 (Self-Attention). The Self-Attention mechanism is defined as fol-
lows:

Self-Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V

Lemma 3.9.2. Consider a sequence of input tokens x1, . . . ,xn, where each xi ∈ Rd,
for 1 ≤ i ≤ n. The Self-Attention mechanism outputs a sequence of the same length,
y1, . . . ,yn, and can be summarized as follows:

1. Initialize Learnable Weights: We create three linear projections of each
embedding ei using three learned matrices WQ, WK , and WV :

Qi = WQei

Ki = WKei

Vi = WV ei

These projections are referred to as the Query, Key, and Value matrices, re-
spectively.
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2. Dot-Product Similarity: We compute the dot-product similarity between
the Query (Q) and Key (K) matrices:

Similarity(Q,K) = QKT

This results in a square matrix of size n× n.

3. Attention Scoring Functions:

S = softmax(Similarity(Q,K)) = softmax(QKT )

The softmax function ensures that the weights for each Value are positive and
sum to 1.

4. Weighted Sum: We compute the weighted sum of the Value matrix using
the softmax weights:

Weighted Sum(V,S) = SV

This results in a matrix of size n×d, where d is the number of features in each
Value vector.

5. Output: We obtain the final output matrix by concatenating the Weighted
Sum matrices computed for each embedding in the input sequence:

Output = [Weighted Sum(V1,S),Weighted Sum(V2,S), . . . ,Weighted Sum(Vn,S)]

In practice, the input embeddings are typically combined with positional en-
coding to capture the sequential information of the input sequence.

Figure 3.16: Sequence of input tokens

The Self-Attention mechanism, with its Query, Key, and Value components and
learnable weight matrices, allows the neural network to attend to relevant features
and capture important dependencies within the input sequence.
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3.9.2 Multi-Head Self-Attention

In the Transformer, the Attention module repeats its computations multiple times
in parallel. Each of these is called an Attention Head. The Attention module
splits its Query, Key, and Value parameters N -ways and passes each split indepen-
dently through a separate Head. All of these similar Attention calculations are then
combined together to produce a final Attention score. This is called Multi-Head
Attention and gives the Transformer greater power to encode multiple relationships
and nuances for each word.

Figure 3.17: Multi-Head Self-Attention

The motivation behind Multi-Head Attention is to make the model focus on dif-
ferent aspects of the input sequence. Instead of using a single attention mechanism,
Multi-Head Attention has multiple ”heads” that work independently.

Multi-Head Attention allows the Transformer model to attend to different as-
pects of the input sequence simultaneously, capturing multiple relationships and
nuances. It enhances the model’s ability to process complex patterns and improves
its performance in various natural language processing tasks.

Lemma 3.9.3. Multi-Head Attention allows the Transformer model to attend to
different aspects of the input sequence simultaneously, capturing multiple relation-
ships and nuances. It enhances the model’s ability to process complex patterns and
improves its performance in various natural language processing tasks.

Proof. Let E = [e1, e2, . . . , en] be a sequence of n embeddings.
We create h sets of learnable projection matrices Wh

Q, Wh
K, and Wh

V, where h
is the number of attention heads.

For each head h, we compute the Query (Qh), Key (Kh), and Value (Vh) ma-
trices as follows:

1. Compute the Query matrix:
Qh

i = Wh
Qei
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2. Compute the Key matrix:
Kh

i = Wh
Kei

3. Compute the Value matrix:
Vh

i = Wh
Vei

We then compute the dot-product similarity between the Query and Key matri-
ces:

Similarity(Qh,Kh) =
QhKhT

√
dk

where dk is the dimension of the Key matrix.
We apply a softmax function to the Similarity matrix:

Sh = softmax(Similarity(Qh,Kh)) = softmax

(
QhKhT

√
dk

)
We compute the weighted sum of the Value matrix using the softmax weights:

Weighted Sum(Vh,Sh) = ShVh

We concatenate the output matrices from all heads together:

Output = [Weighted Sum(V1,S1),Weighted Sum(V2,S2), . . . ,Weighted Sum(Vh,Sh)]

This results in a matrix of size n × dvh, where dv is the number of features in
each Value vector.

The multi-head self-attention mechanism allows the model to capture different
types of relationships between words or tokens in the input sequence and effectively
encode them, leading to improved performance in various natural language process-
ing tasks.

3.10 Attention Networks in Segmentation Task

Attention networks were initially introduced in the field of Natural Language Pro-
cessing (NLP). Researchers discovered that dealing with long sentences posed a chal-
lenge for models. Therefore, it is more effective if the model can focus its attention
on specific words rather than the entire sentence. Attention was first proposed for
neural machine translation in works by [48] and [49]. For instance, when translating
the English sentence ”I am a student” to French as ”Je suis étudiant,” it can be ob-
served that while the model should output ”Je,” it only needs to attend to the word
”I” rather than the entire sentence. Similarly, to output ”étudiant,” it should attend
to the words ”a” and ”student.” Attention networks have also been applied to image
captioning problems, where the network takes an image as input and generates a
descriptive sentence as output. The work ”Show, Attend and Tell” [50]introduced
attention networks for image captioning, which learned to attend to specific regions
while generating corresponding words Figure.3.18. In general, attention networks
emphasize informative features and suppress less informative ones.
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Types of Attention There are primarily two types of attention mechanisms: soft
attention and hard attention. In soft attention, the network distributes its attention
to all regions with certain weights. On the other hand, hard attention selects only
one region while disregarding others. Soft attention networks can be trained end-
to-end and are differentiable, whereas hard attention networks cannot be trained
end-to-end and rely on reinforcement learning techniques. Therefore, this report
will primarily focus on soft attention networks.

Interpretable and Informative One attractive feature of attention networks is
that they provide insights into what is happening inside the network and the cir-
cumstances that led the network to predict a certain class. Attention networks reveal
which regions or features the model is attending to, providing interpretability and
transparency.

Figure 3.18: xample of how attention networks work in image captioning, reproduced with
permission

In this section, we have introduced attention networks and discussed their rele-
vance in the segmentation task. We have provided examples of attention networks in
neural machine translation and image captioning problems. The subsequent sections
will explore different categories of attention networks that have been used for se-
mantic segmentation. These categories are based on how attention is generated and
incorporated into the main network. It is important to note that these categories are
proposed by the author as a conceptual map to understand attention networks, and
following our study we focus on some Attention we based on to build our method
in the next section we will dive into some of the used attention mechanism widely
used in the Segmentation task

3.10.1 Self-Designed Attention Added to the Decoder of a Model

Attention gate (AG) [19] is an attention model that focuses on target structures of
varying shapes and sizes for medical image analysis. The authors justify the use
of attention gates integrated with CNN models (e.g., U-Net [45]) by highlighting
their ability to learn to suppress irrelevant regions and emphasize salient ones. This
eliminates the need for an external localization module, resulting in computational
savings and increased model efficiency. The attention gate utilizes high-level contex-
tual information to weight low-level features based on their location. This weighted
information is then passed through a non-linearity and normalized. Figure.3.19b
provides an overview of the AG model.

To integrate the attention gate with U-Net [45], the features from the decoder
path are used as high-level features to weigh the low-level features from the encoder.
The resulting weighted features are then added to the next decoding layer. Fig-
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ure.3.19b illustrates the integration of the attention gate with U-Net . The authors
conducted experiments using two large 3D CT abdominal datasets and evaluated
the performance using metrics such as the Dice coefficient, precision, recall, and
surface distance.

Figure 3.19: Attention Gate model and its integration with U-Net, reproduced with per-
mission

By incorporating the self-designed attention gate into the U-Net architecture,
the model can effectively attend to relevant regions and suppress irrelevant ones,
leading to improved segmentation performance in medical image analysis tasks.

Pixel-wise Contextual Attention Network (PiCANet) [51] is designed to selec-
tively attend to informative context locations for each pixel. PiCANet is formulated
in both global and local forms to attend to global and local contexts. The PiCANet
module is integrated with U-Net [44]. In the U-Net architecture, a feature map
from the encoder is concatenated with a feature map from the decoder and passed
to either the global or local PiCANet module. The output is then passed to the
next decoder layer. Figure 3.20b illustrates the integration of PiCANet with U-Net.

For the global PiCANet, the aim is to allow each pixel to perceive the overall
feature map. To achieve this, four recurrent neural networks (RNNs) are employed
to sweep the image horizontally and vertically in both directions, incorporating the
global context. The hidden states of each pixel are concatenated, enabling each
pixel to capture surrounding contexts. Finally, a convolutional layer with softmax
normalization is used to shape the output to the desired form.

For the local PiCANet, the goal is to enable each pixel to perceive a local context
region of size W̄×W̄ . Convolutional layers are used to achieve this purpose. Similar
to the global PiCANet, a convolutional layer with softmax normalization is employed
to shape the output.

Figure A.13a provides a graphical representation of the global and local PiCANet
modules. The authors evaluated their approach using six different datasets, includ-
ing PASCAL VOC 2010 [52], and used metrics such as precision, recall, weighted
F-score, and Mean Absolute Error (MAE) for evaluation.

By incorporating the PiCANet modules into the U-Net architecture, the model
can effectively attend to both global and local contexts, allowing for more precise
and informative pixel-wise predictions in the semantic segmentation task.
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Figure 3.20: PiCANet and its integration , reproduced with permission

In [51], the authors addressed two challenges in semantic segmentation: intra-
class inconsistency and inter-class indistinction. To tackle these challenges, they
proposed a Discriminative Feature Network (DFN) [1], which consists of two sub-
networks: the Smooth Network and the Border Network.

The Smooth Network aims to address intra-class inconsistency by capturing a
multi-scale context. It utilizes a U-shaped architecture and incorporates Channel
Attention Blocks (CAB) to guide low-level features with spatial predictions based
on high-level features and semantic predictions. The CAB employs global average
pooling to capture global context information. Figures 3.21a and 3.21b provide
graphical explanations of the Channel Attention Block.

The Border Network focuses on inter-class indistinction and leverages low-stage
information for accurate edge detection and high-stage information for capturing
semantic information. It emphasizes the semantic boundary that separates classes.
The network incorporates a Refinement Residual Block (RRB) for this purpose.
Figure 3.21c shows a graphical explanation of the RRB used in the DFN architecture.

The authors conducted experiments using the PASCAL VOC 2012 [52] and
Cityscapes [53] datasets and evaluated the performance using the mean Intersec-
tion over Union (mIoU) metric.

By incorporating the Smooth Network and the Border Network into the DFN
architecture, the model addresses both intra-class inconsistency and inter-class in-
distinction, leading to improved semantic segmentation performance.
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Figure 3.21: DFN and its components [1], reproduced with permission.

3.11 Fourier Transform

The Fourier Transform is a mathematical technique that decomposes a function into
its frequency components. It allows us to analyze and represent signals and functions
in the frequency domain, which provides valuable insights into their underlying
properties. This section focuses on the 2D Fourier Transform.

The Fourier Theorem states that any periodic function can be expressed as a sum
of sine and cosine waves with appropriate amplitudes and phases. This theorem is
named after Joseph Fourier, a French mathematician who made significant contri-
butions to the study of heat transfer and vibrations. The Fourier series, derived
from this theorem, has many applications in various fields of mathematics.

In the context of the Fourier Transform, a continuous function f(x) that is
integrable over R can be represented as an infinite sum of sines and cosines. This
representation is known as the Fourier series and is given by:

f(x) =
a0
2

+
∞∑
n=1

[
an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

)]
Here, T represents the period of the function, and the Fourier coefficients a0, an,

and bn can be calculated using the following formulas:

a0 =
1

T

∫ T/2

−T/2

f(x), dx an =
2

T

∫ T/2

−T/2

f(x) cos

(
2πnx

T

)
, dx bn =

2

T

∫ T/2

−T/2

f(x) sin

(
2πnx

T

)
, dx

On the other hand, the inverse Fourier transform allows us to reconstruct the
original function f(x) from its Fourier coefficients. It is given by:
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f(x) =
∞∑

n=−∞

cne
i2πnx/T

Here, cn represents the Fourier coefficients and can be calculated using the for-
mula:

cn =
1

T

∫ T/2

−T/2

f(x)e−i2πnx/T , dx

The Fourier transform and its inverse are fundamental tools in signal processing,
image processing, and various other areas of science and engineering. They allow us
to analyze and manipulate signals and images in the frequency domain, providing
insights into their frequency components and facilitating tasks such as noise removal,
compression, and feature extraction.

Note that the presented equations and concepts refer specifically to the 2D
Fourier Transform, which is applicable to two-dimensional signals and functions,
such as images.

3.11.1 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is the equivalent of the continuous Fourier
Transform for signals known only at discrete time instants separated by sample
times. In contrast to the continuous Fourier Transform, which operates on contin-
uous signals defined over an infinite interval, the DFT processes finite sequences of
data.

Consider a continuous signal, denoted as x(t), which serves as the source of the
data. Let the samples of this signal be represented as x[n], where n indicates the
sample index. The Fourier Transform of the original signal, x(t), would be expressed
as:

X(ω) =

∫ ∞

−∞
x(t) · e−jωt, dt

Now, with discrete data points, we can consider each sample x[n] as an impulse
with an area x[n]∆t. As a result, we can rewrite the Fourier Transform equation for
discrete signals as:

X(ω) =
∞∑

n=−∞

x[n] · e−jωn∆t

The DFT enables us to compute the discrete frequency spectrum X(k) of the
signal, where k represents the frequency index ranging from 0 to N − 1. The DFT
formula calculates the contribution of each sample at different discrete frequencies.

To efficiently compute the DFT, the Fast Fourier Transform (FFT) algorithm
is widely used. The FFT reduces the computational complexity of the DFT from
O(N2) to O(N logN), making it practical for real-time applications and large data
sets.

By performing the DFT, we gain insights into the frequency content of the signal.
The frequency spectrum reveals the amplitudes and phases of different frequency
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components present in the signal. This information is utilized in various fields,
including digital signal processing, image processing, audio analysis, telecommuni-
cations, and scientific research.

It is important to note that the DFT assumes periodicity of the signal with a
period of N samples. When applying the DFT to non-periodic signals, spectral
leakage and other artifacts may arise. Techniques like windowing can be employed
to minimize these effects.

The inverse DFT allows us to reconstruct the original signal from its frequency
spectrum. It is given by:

x[n] =
1

N

N−1∑
k=0

X(k) · ejωn∆t

The DFT and its inverse play a fundamental role in digital signal processing.
They provide a powerful tool for analyzing, manipulating, and synthesizing signals
in the frequency domain.

3.11.2 Fast Fourier Transform

The Fast Fourier Transform (FFT) is a widely used algorithm for efficiently com-
puting the Discrete Fourier Transform (DFT) of a sequence. In the context of
medical imaging, the FFT plays a crucial role in various applications, such as im-
age filtering, registration, and analysis. By leveraging the FFT, we can efficiently
analyze the frequency components of medical images, enabling advanced processing
and interpretation.

The 2D Fast Fourier Transform (FFT) extends the concept of the 1D FFT to
two-dimensional signals, such as images. Let f(x, y) be a 2D image with dimensions
M×N . The 2D FFT of f(x, y), denoted as F (u, v), is computed using the following
equation:

F (u, v) =
M−1∑
x=0

N−1∑
y=0

f(x, y)e−i2π(ux
M

+ vy
N )

Here, F (u, v) represents the Fourier Transform of the 2D image f(x, y), and (u, v)
are the frequency domain variables. The 2D FFT allows us to analyze the spatial
frequency content of the image.

The inverse 2D Fast Fourier Transform (IFFT) enables us to reconstruct the
original image f(x, y) from its frequency domain representation F (u, v). It is defined
as follows:

f(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

F (u, v)ei2π(ux
M

+ vy
N )

The 2D FFT and IFFT are powerful tools in medical imaging. They allow us to
analyze the spatial frequency components of an image, identify patterns, filter out
noise, and extract relevant information. By leveraging the frequency domain, we can
apply various image processing techniques, such as image enhancement, restoration,
and compression, to improve the quality and interpretability of medical images.
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In this section, we will explore the applications of Fast Fourier Transform (FFT)
in medical imaging. We begin by providing an explanation of Fourier Transform and
Discrete Fourier Transform (DFT), which will lay the foundation for understanding
FFT. We will then discuss the advantages of utilizing FFT over convolution oper-
ations, highlighting the fact that both methods yield equivalent results in different
domains.

The 2D Fast Fourier Transformation (FFT) involves processing a 2D image,
denoted as f(x, y), with dimensions M ×N . The FFT of f(x, y) can be defined as
follows:

F (u, v) =
M−1∑
x=0

N−1∑
y=0

f(x, y)e−i2π(ux/M+vy/N) (3.19)

Here, F (u, v) represents the Fourier Transform of f(x, y).
Conversely, the inverse 2D Fast Fourier Transform (IFFT) of F (u, v) is given by:

f(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

F (u, v)ei2π(ux/M+vy/N) (3.20)

3.11.3 Fast Fourier Transform for Medical Imaging

In this equation, f(x, y) corresponds to the original 2D image. It is worth noting
that the 2D FFT and IFFT are extensions of their 1D counterparts, enabling com-
putations in two dimensions. These transformations find extensive applications in
image processing and computer vision.

The Convolution Theorem establishes a fundamental connection between con-
volution and the Fourier Transform. Let’s consider two continuous functions, f(x)
and g(x), with Fourier Transforms F (ω) and G(ω), respectively. The convolution of
f(x) and g(x) can be defined as follows:

(f ∗ g)(x) =

∫ ∞

−∞
f(x− t)g(t)dt (3.21)

The Fourier Transform of the convolution is given by:

Ff(x) ∗ g(x) = F (ω)G(ω) (3.22)

In other words, convolution in the time domain corresponds to multiplication in
the frequency domain.

To establish the equivalence of convolution and the Fourier Transform, let’s con-
sider the convolution of two functions, f and g, in the time domain:

(f ∗ g)(t) =

∫ ∞

−∞
f(τ)g(t− τ)dτ (3.23)

The Fourier Transform of a function f(t) is given by:

f̂(ω) =

∫ ∞

−∞
f(t)e−iωtdt (3.24)
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By employing the Fourier transform, we can demonstrate the equivalence of
convolution and multiplication in the frequency domain. Starting with the Fourier
transform of the convolution of f and g:

Ff ∗ g(ω) =

∫ ∞

−∞
(f ∗ g)(t)e−iωtdt (3.25)

=

∫ ∞

−∞

∫ ∞

−∞
f(τ)g(t− τ)dτe−iωtdt (3.26)

=

∫ ∞

−∞

∫ ∞

−∞
f(τ)g(t− τ)e−iωtdtdτ (3.27)

=

∫ ∞

−∞
f(τ)

∫ ∞

−∞
g(t− τ)e−iωtdtdτ (3.28)

=

∫ ∞

−∞
f(τ)

(∫ ∞

−∞
g(t− τ)e−iωtdt

)
dτ (3.29)

=

∫ ∞

−∞
f(τ)e−iωτ

(∫ ∞

−∞
g(u)e−iωudu

)
dτ (3.30)

= f̂(ω)ĝ(ω) (3.31)

Consequently, convolution in the time domain is equivalent to multiplication in
the frequency domain.

In summary, the Fast Fourier Transform (FFT) is a valuable tool in medical
image processing. By utilizing the concepts of Fourier Transform and convolution,
the FFT enables efficient computation and provides results equivalent to traditional
convolution operations in a different domain.

When considering the computational cost of image processing algorithms, it is
important to analyze their algorithmic complexity. In this section, we compare the
algorithm complexity of Fast Fourier Transform (FFT) and convolution operations.

Operation Algorithm Complexity

FFT O(N logN)

Convolution O(N2)

Table 3.1: Algorithm Complexity of FFT and Convolution Operations

The table above presents the algorithm complexity of FFT and convolution op-
erations. The algorithm complexity is often represented using Big O notation, which
provides an upper bound on the computational resources required.

For FFT, the algorithm complexity is O(N logN), where N represents the num-
ber of elements in the input signal. The FFT algorithm exploits the divide-and-
conquer approach, utilizing a combination of decimation and butterfly operations to
reduce the computational complexity significantly compared to direct computation
of the Discrete Fourier Transform (DFT), which has a complexity of O(N2).

On the other hand, convolution operations have an algorithm complexity of
O(N2). Convolution involves a pairwise multiplication and summation of corre-
sponding elements from two signals, requiring N2 operations to compute the output.
This makes convolution computationally expensive, especially for larger input sizes.
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The significant difference in algorithm complexity between FFT and convolution
operations highlights the advantage of FFT in terms of computational efficiency. By
leveraging FFT, medical image processing algorithms can achieve substantial speed-
ups and reduce computational costs compared to traditional convolution operations.

It is important to note that the algorithm complexity presented here represents
the theoretical analysis of these operations and may not account for additional
factors such as memory access patterns or hardware optimizations. Nonetheless,
the provided complexity values serve as a general guideline for understanding the
comparative efficiency of FFT and convolution operations.

In conclusion, the FFT algorithm offers a more efficient computational approach
for medical image processing compared to convolution operations, as evidenced by
its lower algorithm complexity.
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