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Abstract

Background

Neural Networks, inspired by the human brain, are a class of machine learning models
composed of interconnected artificial neurons. They have a rich history dating back to
the 1940s, with notable advancements in the 1980s and 1990s when techniques like back-
propagation enabled the training of multi-layer networks. Neural Networks have since
experienced a renaissance, achieving state-of-the-art results in diverse domains. However,
training them effectively remains a challenge. This thesis introduces Nano-AutoGrad, a
system built upon automatic differentiation and optimization methods. Nano-AutoGrad
efficiently computes gradients, facilitates parameter optimization, and incorporates mech-
anisms such as Multi-Perceptrons and Linear models. It also allows for expanding the net-
work architecture with additional layers, enhancing the performance and representation
capabilities of Neural Networks. The objective is to design and develop Nano-AutoGrad
as an advanced tool for training complex models, leveraging historical advancements and
computational graph understanding.

Method and Aim

Nano-AutoGrad is a Micro-Framework that efficiently trains Neural Networks using auto-
matic differentiation and optimization techniques and Computational graphs. It computes
gradients by applying the chain rule, enabling parameter updates for improved perfor-
mance. Optimization methods like Stochastic Gradient Descent (SGD), are utilized to
iteratively update network parameters based on computed gradients. The aim of this the-
sis is to design and develop Nano-AutoGrad as a simple easy compute Micro-Framework
for training Neural Networks. By incorporating mechanisms such as Multi-Perceptrons,
Linear models, and additional layers, the goal is to enhance network performance and
versatility. The study of Nano-AutoGrad in training Linear models and achieving promis-
ing results. Nano-AutoGrad’s efficient gradient computation and parameter optimization
contribute to advancements in Neural Network training

Conclusion

Through the development and evaluation of Nano-AutoGrad, this thesis highlights the
effectiveness of historical advancements in Neural Networks, combined with automatic
differentiation and optimization techniques. By incorporating mechanisms such as Multi-
Perceptrons and Linear models, and expanding the network architecture with additional
layers, Nano-AutoGrad demonstrates simple computational yet improved representation
capabilities. The study showcases the potential of Nano-AutoGrad to contribute to the
field of machine learning by providing a high-abstract tool for training Linear models and
optimizing Neural Networks, building upon the rich history and progress in this field. The
understanding of computational graphs further enhances the comprehension of how Neural



Networks process information and compute gradients, making them a key aspect of the
training process.
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1 Chapter Introduction

1.1 Motivation

The field of neural networks, also known as connectionist models or parallel distributed
processing, experienced a surge of interest with the introduction of simplified neurons by
McCulloch and Pitts in 1943 [1]. These neurons were initially proposed as models of
biological neurons and as conceptual components for computational circuits. However,
the enthusiasm for neural networks waned when Minsky and Papert published their book
”Perceptrons” in 1969 [2], which highlighted the limitations of perceptron models. As a
result, funding for neural networks was redirected, and many researchers left the field.
Only a handful of dedicated researchers, such as Teuvo Kohonen, Stephen Grossberg,
James Anderson, and Kunihiko Fukushima, continued their efforts.

The renewed interest in neural networks emerged in the early 1980s when significant
theoretical advancements were made, including the discovery of error backpropagation and
advancements in hardware capabilities. This revival is evident in the increasing number
of scientists, funding allocations, conferences, and journals dedicated to neural networks.
Nowadays, most universities have dedicated neural networks [3] research groups within
their psychology, physics, computer science, or biology departments. Artificial neural
networks [4] can be characterized as computational models with unique properties such
as adaptability, learning ability, generalization, and the ability to cluster or organize data
through parallel processing. However, it is crucial to determine the extent to which neural
networks outperform existing non-neural models in specific applications. This question
remains unanswered and subject to ongoing research. Biological systems[5] often serve as
a source of inspiration for neural network models. However, our understanding of biological
systems, even at the lowest cell level, is limited. As a result, the models we employ for
artificial neural systems may oversimplify the complexity of biological systems.

In this study, we provide an introduction to artificial neural networks, exploring their
theoretical foundations [6], practical applications, and the challenges associated with deep
learning. Deep learning models, a subclass of neural networks, excel at discovering latent
hierarchical structures within large datasets. However, their complexity, characterized by
numerous layered models and billions of parameters, makes them inherently difficult to
comprehend, even for experts in the field.The term ”deep learning” encompasses three
interconnected meanings: knowledgeable, reflecting the model’s accuracy in specific image
processing tasks; layered, visualizing the learned hierarchical structures; and impenetra-
ble, representing the inherent lack of interpretability and understanding of the algorithmic
operations. In this course, we delve into these three dimensions and explore their intri-
cate relationship with each other. Moreover, the advent of modern artificial intelligence
(AI) systems, equipped with billions of elementary components and empowered by deep
learning, has achieved remarkable milestones in tackling tasks that were once consid-
ered exclusive to natural intelligence. Deep learning utilizes artificial neural networks as
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a model, which, while loosely inspired by biological neural networks, represents a flex-
ible set of functions built from basic computational blocks called neurons. This model
of computation differs significantly from the traditional programming paradigm used in
conventional computers.

Deep neural networks, comprising multiple layers of parallel neurons organized se-
quentially, hold immense power in learning representations of the world. This process
of representation learning transforms data into increasingly refined forms that facilitate
solving complex tasks. Such capability is considered a hallmark of success in both ar-
tificial and biological intelligence. Despite the accomplishments and widespread interest
in deep learning, the theoretical understanding of this framework is still in its infancy.
Theoretical analyses often involve unrealistic assumptions that fail to capture the essence
of deep neural networks as they are commonly used in practice. There exists a consider-
able gap between theory and practice, with practitioners achieving groundbreaking results
that outpace theoretical advancements. Consequently, the deepness of deep learning re-
mains a subject of limited theoretical exploration, despite the wealth of empirical evidence
highlighting its importance in the framework’s success.

When it comes to gradient-based optimization in machine learning, the calculation
of derivatives plays a crucial role. Several methods exist for computing derivatives, in-
cluding Manual Differentiation, Numerical Differentiation, Symbolic Differentiation, and
Automatic Differentiation [7] [3]. Manual Differentiation involves applying fundamental
derivative rules to compute derivatives, but it can be time-consuming, especially for com-
plex functions. Numerical Differentiation, on the other hand, relies on finite differences
and is relatively easy to implement. However, it may suffer from accuracy issues due to
round-off and truncation errors. Moreover, Numerical Differentiation does not scale well
for gradients involving millions of parameters, making it unsuitable for machine learning
tasks.

Symbolic Differentiation [8] provides an automated version of Manual Differentiation
and overcomes some of its limitations. However, it often leads to expression swelling, where
the resulting expressions become unwieldy and difficult to handle effectively. In contrast,
Automatic Differentiation leverages the chain rule of differentiation. It introduces a change
in the domain of variables to include derivative values and modifies the semantics of
operators to propagate derivatives according to the chain rule. Automatic Differentiation
dynamically generates numerical derivative evaluations during code execution, rather than
producing derivative expressions at the time of implementation. This approach enables
efficient computation of derivatives and is particularly well-suited for machine learning,
where gradients with respect to numerous parameters need to be calculated.

While deep learning has flourished with the utilization of gradient-based optimization
and automatic differentiation, theoretical understanding of the framework still lags behind
practical advancements [4]. Theoretical analyses often rely on unrealistic assumptions
that fail to capture the complexities and nuances of deep neural networks in real-world
applications. Closing the gap between theory and practice is a critical area of research.
By bridging this divide, we can uncover deeper insights into the workings of deep learning
models, enhance interpretability, and unlock further potential for advancement.

In this section, we will explore the motivations behind neural networks and deep learn-
ing, investigate their theoretical foundations, and delve into practical applications. By
gaining a comprehensive understanding of these topics, we aim to equip you with the
knowledge and skills necessary to harness the power of neural networks and navigate the
intricacies of deep learning.

2



1.2 Aim

The aim of Nano-Autograd is to provide a simple and efficient Micro-Framework for train-
ing Neural Networks by enabling effortless computation of gradients using automatic dif-
ferentiation and optimization techniques. It empowers users to leverage the full expressive
power of a modern high-level programming language (Python) and a mature numeri-
cal library (Numpy) when defining loss functions. Nano-Autograd supports higher-order
derivatives, allowing the computation of gradients for functions composed of gradients.
By incorporating mechanisms such as Multi-Perceptrons, Linear models, and additional
layers, the goal is to enhance network performance and versatility. The efficient gra-
dient computation and parameter optimization offered by Nano-Autograd contribute to
advancements in the training of Neural Networks.

1.3 Objectives

The objectives of this study are as follows:

1. Develop Nano-Autograd, a simple and efficient Micro-Framework for training Neural
Networks.

2. Implement automatic differentiation and optimization techniques in Nano-Autograd
to enable effortless computation of gradients and efficient parameter updates.

3. Support higher-order derivatives in Nano-Autograd, allowing the computation of
gradients for functions composed of gradients.

4. Incorporate mechanisms such as Multi-Perceptrons, Linear models, and additional
layers into Nano-Autograd to enhance network performance and versatility.

5. Provide comprehensive documentation and examples to facilitate the usage and un-
derstanding of Nano-Autograd by researchers and practitioners.

By achieving these objectives, this study aims to contribute to the field of Neural
Networks by providing a user-friendly and efficient tool for training models, enabling
researchers and practitioners to explore and innovate in the realm of deep learning.

1.3.1 Overview of The heart of AI: Backpropagation

It is important to note that Nano-Autograd builds upon the fundamental concept of back-
propagation, which forms the core of many modern deep learning frameworks, including
PyTorch. Backpropagation [9] is a powerful algorithm that allows for efficient computation
of gradients in Neural Networks, enabling effective parameter updates through optimiza-
tion techniques.

PyTorch, being a widely used and mature deep learning framework, provides extensive
functionality and support for training large-scale and complex Neural Networks. It offers a
range of advanced features, optimization algorithms, and extensive documentation, making
it a preferred choice for researchers and practitioners working with more sophisticated
model architectures. While Nano-Autograd aims to provide a simpler alternative for
training Neural Networks, it acknowledges the importance of frameworks like PyTorch for
tackling larger-scale problems and leveraging cutting-edge deep learning advancements.
Researchers and practitioners should consider the specific requirements of their tasks and
the scale of their models when choosing between Nano-Autograd and frameworks like [10].

3



1.4 Study questions

This study aims to address the following Study questions:

1. How can Nano-Autograd be developed as a simple and efficient Micro-Framework
for training Neural Networks?

2. How can automatic differentiation and optimization techniques be implemented in
Nano-Autograd to enable effortless computation of gradients and efficient parameter
updates?

3. To what extent can Nano-Autograd support higher-order derivatives, allowing the
computation of gradients for functions composed of gradients?

4. How does the incorporation of mechanisms such as Multi-Perceptrons, Linear mod-
els, and additional layers in Nano-Autograd enhance network performance and ver-
satility?

By addressing these research questions, this study aims to provide insights into the
development and capabilities of Nano-Autograd, contributing to the broader understand-
ing and application of automatic differentiation and optimization techniques in the field
of Neural Networks.

1.5 Delimitations

This study has the following delimitations:
Focus on Nano-Autograd: The study and development efforts in this study are

centered around Nano-Autograd as a specific Micro-Framework for training Neural Net-
works. While Nano-Autograd aims to provide simplicity and efficiency, its scope is limited
to simple model architectures and may not be suitable for more complex and large-scale
networks.

Simplicity vs. Scalability: Nano-Autograd is designed to be a simple and easy-to-
use Micro-Framework, prioritizing ease of implementation and understanding. However,
its focus on simplicity may result in limitations when it comes to handling large-scale mod-
els and complex computational graphs. For more scalable and advanced Neural Network
training, alternative frameworks such as PyTorch, which offer extensive capabilities and
optimizations, should be considered.
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2 Chapter History of Neural Networks

2.1 Overview Neural Network history

The idea of an artificial Neural Network goes back to 1940 when Walter Pitts and Warren
McCulloch discovered that neurons in the human brain essentially perform combinations
of logical operations and have binary outputs [11] that depend on a specific threshold:
active or not active. Based on that fact, mathematical models were built and created
great interest in the Artificial Intelligence community. However, at that time, computers
had just been invented and were not close to being able to handle algorithms of such
complexity. In the following years, scientists lost interest in Neural Networks due to a lack
of progress in the field and other, at the time, more promising methods. In 1970 Seppo
Linnainmaa discovered Backpropagation, that later should revolutionize the performance
of Neural Networks. Still, Neural Networks were not the focus of the Artificial Intelligence
Community until 2015, when students won the ImageNet Large Scale Visual Recognition
Competition with remarkable results. Since then, Neural Networks are an uprising topic
in Artificial Intelligence.

2.2 Neural Networks as Bio-inspired Algorithms

Different regions in the mammalian brain perform different tasks. The cerebral cortex is
the outer part of the mammalian brain, one of its largest and most developed segments.
We can think of the cerebral cortex as a thin sheet (about 2 to 5 mm thick) that folds
upon itself to form a layered structure with a large surface area that can accommodate
large numbers of nerve cells.

neurons. The human cerebral cortex contains about 1010 neurons. They are linked
together by nerve strands (axons) that branch and end in synapses. These synapses are
the connections to other neurons. The synapses connect to dendrites, branches extending
from the neural cell body that is designed to collect input from other neurons in the
form of electrical signals. A neuron in the human brain may have thousands of synaptic
connections with other neurons.

The resulting network of connected neurons in the cerebral cortex is responsible for
the processing of visual, audio, and sensory data. 2.1 shows neurons in the cerebral
cortex. This drawing was made by Santiago Ramón y Cajal more than 100 years ago. By
microscope, he studied the structure of neural networks in the brain and documented his
observations by ink-on-paper drawings like the one reproduced in 2.1.
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Figure 2.1: Neurons in the cerebral cortex, a part of the mammalian brain

One can distinguish the cell bodies of neural cells, their axons (f), and their dendrites.
The axons of some neurons connect to the dendrites of other neurons, forming a neural
network A schematic image of a neuron is drawn in 2.2. Information is processed from left
to right. On the left are the dendrites that receive signals and connect to the cell body of
the neuron where the signal is processed.

Figure 2.2: Schematic image of a neuron.

The right part of the Figure shows the axon, through which the output is sent to other
neurons. The axon connects to their dendrites via synapses. Information is transmitted
as an electrical signal. 2.3 shows an example of the time series of the electric potential for
a pyramidal neuron in fish. The time series consists of an intermittent series of electrical-
potential spikes. Quiescent periods without spikes occur when the neuron is inactive,
during spike-rich periods we say that the neuron is active.
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Figure 2.3: Spike train in the electro-sensory pyramidal neuron of a fish
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3 Chapter Theory

3.1 Neural Networks

In this section, we will delve into the topic of single-layer neural networks, which includes
some of the classical approaches to neural computing and learning problems. We will first
discuss the representational power of single-layer networks and their learning algorithms,
providing examples of their usage. Subsequently, we will address the representational
limitations encountered by single-layer networks.

Two classical models will be described in the first part of this chapter: the Perceptron,
proposed by Rosenblatt in the late 1950s [1] An artificial neural network is an application
that is non-linear with respect to its parameters θ, and it associates an input x with an
output y = f(x, θ). For simplicity, we assume that y is unidimensional, although it could
also be multi-dimensional. The function f has a specific form that will be explained.
Neural networks can be used for regression or classification tasks. The parameters θ are
estimated from a learning sample, and the optimization function is non-convex, which
can result in finding local minimizers. The success of neural networks stems from the
universal approximation theorem proposed by Cybenko (1989) and Hornik (1991) [1, 12].
Furthermore, LeCun (1986) introduced an efficient method called backpropagation of the
gradient, which enables the computation of gradients for neural networks and facilitates
the attainment of local minimizers for quadratic criteria [13]. The use of neural networks,
with their flexibility in representation and their efficient optimization techniques, has
contributed significantly to the advancement of artificial intelligence and machine learning.

3.1.1 Artificial Neuron

An artificial neuron, denoted as fj , is a function of the input x = (x1, . . . , xd) weighted
by a vector of connection weights wj = (wj,1, . . . , wj,d), along with a neuron bias bj . This
neuron is associated with an activation function φ, and its output yj is computed as
follows:

yj = fj(x) = φ

(
d∑

i=1

wj,ixi + bj

)
. (3.1)

Various activation functions can be considered for the artificial neuron. Some com-
monly used activation functions include:

• The identity function:
φ(x) = x (3.2)

• The sigmoid function (or logistic function):

φ(x) =
1

1 + exp(−x)
(3.3)
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• The hyperbolic tangent function :

tanh : φ(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

=
exp(2x)− 1

exp(2x) + 1
(3.4)

• The hard threshold function:

φβ(x) =

{
1, if x ≥ β

0, otherwise
(3.5)

• The Rectified Linear Unit (ReLU) activation function:

φ(x) = max(0, x) (3.6)

The artificial neuron can be represented schematically as follows, where Σ = ⟨wj , x⟩+
bj :

Figure 3.1: Schematic representation of an artificial neuron.

These activation functions introduce non-linearity into the neural network, enabling it
to learn complex patterns and make non-linear decisions. The choice of activation function
depends on the nature of the problem and the desired behavior of the neural network.

3.1.2 Activation and output rules

after we introduce a general Overview of Neural networks we need to understand the
connectivity between neurons which leads us to activation functions [14] [15], moreover,
We also need a rule which gives the effect of the total input on the activation of the unit.

We need a function Fk which takes the total input s
(t)
k and the current activation y

(t)
k and

produces a new value of the activation of the unit k:

y
(t+1)
k = Fk(y

(t)
k , s

(t)
k ) (3.7)

Often, the activation function is a non-decreasing function of the total input of the
unit:

y
(t+1)
k = Fk(s

(t)
k ) (3.8)

In some cases, the output of a unit can be a stochastic function of the total input of the
unit. In that case, the activation is not deterministically determined by the neuron input,
but the neuron input determines the probability p that a neuron gets a high activation
value:

p(yk = 1|sk) = σ(sk) (3.9)
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Historically, the sigmoid function was mostly used as the activation function since it
is differentiable and allows us to keep values in the interval [0, 1]. Nevertheless, it has a
problem: its gradient is very close to 0 when |x| is not close to 0. Figure 3 represents the
sigmoid function and its derivative. With neural networks with a high number of layers
(which is the case for deep learning), this causes trouble for the backpropagation algorithm
to estimate the parameters (backpropagation is explained in the following). This is why
the sigmoid function was supplanted by the rectified linear function. This function is not
differentiable at 0, but in practice, this is not really a problem since the probability to
have an entry equal to 0 is generally null. The ReLU function also has a sparsification
effect. The ReLU function and its derivative are equal to 0 for negative values, and no
information can be obtained in this case for such a unit. This is why it is advised to add
a small positive bias to ensure that each unit is active. Several variations of the ReLU
function are considered to make sure that all units have a non-vanishing gradient [16] and
that for x < 0, the derivative is not equal to 0. Namely

φ(x) = max(x, 0) + αmin(x, 0) (3.10)

where α is either a fixed parameter set to a small positive value, or a parameter to
estimate.

Figure 3.2: Various activation functions for a unit

3.2 Multi-Layer Perceptron

A multi-layer perceptron [17] (or neural network) is a structure composed of several hidden
layers of neurons, where the output of a neuron in one layer becomes the input of a neuron
in the next layer. Additionally, the output of a neuron can also be the input of a neuron
in the same layer or in previous layers (this is the case for recurrent neural networks).
The last layer called the output layer, may apply a different activation function compared
to the hidden layers, depending on the type of problem at hand, such as regression or
classification. Figure 4 represents a neural network with three input variables, one output
variable, and two hidden layers.

Multi-layer perceptrons shown in Fig 3.3 have a basic architecture where each unit
(or neuron) in a layer is connected to all the units in the next layer but has no direct
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connection with the neurons in the same layer. The architectural parameters include the
number of hidden layers and the number of neurons in each layer. The choice of activation
functions is also left to the user. For the output layer, as mentioned earlier, the activation
function is generally different from the ones used in the hidden layers.

Figure 3.3: basic neural network multi-layer perceptron

In regression tasks, no activation function is applied to the output layer. For binary
classification, where the output provides a prediction of P (Y = 1/X) (since this value
is in the range [0, 1]), the sigmoid activation function is commonly used. In multi-class
classification, the output layer contains one neuron per class i, giving a prediction of P (Y =
i/X). The sum of these predicted probabilities should be equal to 1. The multidimensional
softmax function is typically employed for this purpose:

softmax(z)i =
exp(zi)∑
j exp(zj)

Let us summarize the mathematical formulation of a multi-layer perceptron with L
hidden layers. We set h(0)(x) = x.

For k = 1, . . . , L (hidden layers):

a(k)(x) = b(k) +W (k)h(k−1)(x)

h(k)(x) = φ(a(k)(x))

For k = L+ 1 (output layer):

a(L+1)(x) = b(L+1) +W (L+1)h(L)(x)

h(L+1)(x) = ψ(a(L+1)(x)) := f(x, θ)

where φ is the activation function and ψ is the output layer activation function (e.g.,
softmax for multiclass classification). At each step, W (k) is a matrix with the number of
rows equal to the number of neurons in layer k and the number of columns equal to the
number of neurons in layer k − 1.

3.3 Tensor Foundation

Computing derivatives of tensor expressions, also known as tensor calculus, is a fundamen-
tal task in machine learning. A key concern is the efficiency of evaluating the expressions
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and their derivatives that hinge on the representation of these expressions. Recently, an
algorithm for computing higher-order derivatives of tensor expressions like Jacobians or
Hessians has been introduced that is a few orders of magnitude faster than previous state-
of-the-art approaches. Unfortunately, the approach is based on Ricci notation and hence
cannot be incorporated into automatic differentiation frameworks from deep learning like
TensorFlow, PyTorch, Nno-Autograd, or JAX that use the simpler Einstein notation.
This leaves two options, to either change the underlying tensor representation in these
frameworks or to develop a new, provably correct algorithm based on Einstein notation.
Obviously, the first option is impractical. Hence, we pursue the second option. Here, we
show that using Ricci notation is not necessary for an efficient tensor calculus and develop
an equally efficient method for the simpler Einstein notation. It turns out that turning to
Einstein notation enables further improvements that lead to even better efficiency.

3.3.1 Einstein notation

In tensor calculus, three types of multiplication are distinguished: inner, outer, and
element-wise multiplication. Indices play a crucial role in distinguishing between these
types. Given tensors A, B, and C, any multiplication of A and B can be expressed as:

C[s3] =
∑

(s1∪s2)\s3

A[s1] ·B[s2]

Here, C represents the result tensor, s1, s2, and s3 are the index sets of the left
argument, the right argument, and the result tensor, respectively. The summation symbol
is relevant only for inner products, which are denoted by shared upper and lower indices
in Ricci calculus. If we prefer not to distinguish between upper and lower indices, the
summation must be explicitly included through the result tensor. The standard practice
for achieving this is to exclude the index for summation from the index set of the result
tensor. Therefore, the index set of the result tensor is always a subset of the union of the
index sets of the multiplication’s arguments, i.e., s3 ⊆ (s1 ∪ s2).

In the following discussion, we denote the generic tensor multiplication simply as C =
A ∗ (s1, s2, s3)B, where s3 explicitly represents the index set of the result tensor. This
notation is essentially identical to the tensor multiplication einsum in libraries such as
NumPy, TensorFlow, PyTorch, and the Tensor Comprehension Package [18].

The ∗(s1, s2, s3)-notation closely resembles standard Einstein notation. In Einstein
notation, the index set s3 of the output is omitted, and the convention is to sum over all
shared indices in s1 and s2. However, this restriction limits the types of multiplications
that can be represented. The set of multiplications representable in standard Einstein no-
tation is a proper subset of the set representable by our notation. For example, standard
Einstein notation cannot directly represent element-wise multiplications. Nonetheless, in
the following discussion, we refer to the ∗(s1, s2, s3)-notation simply as Einstein nota-
tion, as it is the standard practice in all deep learning frameworks. Table 3.1 provides a
comparison of different linear algebra notations.

Table 3.1 shows examples of tensor expressions in standard linear algebra notation,
Ricci calculus, and Einstein notation. The first group demonstrates an outer product, the
second group shows inner products, and the last group provides examples of element-wise
multiplications. As seen in Table 3.1, Ricci notation and Einstein notation are syntactically
similar. However, they have significant semantic differences. Ricci notation distinguishes
between co- and contravariant dimensions/indices, whereas Einstein notation does not.
Although this may seem like a minor difference, it has substantial implications when

12



Table 3.1: Comparison of different linear algebra notations.

Ricci Notation Einstein Notation Vectorized Notation

yixj y ∗ (i, j, ij)x yx
Aijxj A ∗ (ij, j, i)x Ax
yixi y ∗ (i, i, ∅)x y · x
AijBjk A ∗ (ij, jk, ik)B AB
yixi y ∗ (i, i, i)x y · x

Aijdiag(x) A ∗ (ij, i, ij)x A · diag(x)

computing derivatives. For example, when using Ricci notation, both forward and reverse
mode automatic differentiation can be treated in the same way [5], but this is not the case
with Einstein notation.

We can demonstrate that the generic tensor multiplication operator ∗(s1, s2, s3) is
associative, commutative, and satisfies the distributive property. Our tensor calculus,
which we introduce in the next section, relies on all three properties. By s1s2, we denote
the concatenation of the index sets s1 and s2. An example where the concatenation of two
index sets is used is the outer product of two vectors, as shown in the first row of Table
3.1.

Lemma 2.1. (Associativity) Let s1, s2, s3, and s4 be index sets with s3 ⊆ s1 ∪ s2 and
s4 ∩ (s1 ∪ s2) = ∅. Then it holds that

(A ∗ (s1, s2s4, s3s4)B) ∗ (s3s4, s4, s3)C = A ∗ (s1, s2, s3)(B ∗ (s2s4, s4, s2)C)

Proof: We have

(A ∗ (s1, s2s4, s3s4)B) ∗ (s3s4, s4, s3)C

=
∑
s4

 ∑
(s1∪s2)\s3

A[s1] ·B[s2s4]

 · C[s4]

=
∑

((s1∪s2)\s3)∪s4

A[s1] ·B[s2s4] · C[s4]

=
∑

(s1∪s2)\s3

A[s1]

(∑
s4

B[s2s4] · C[s4]

)
= A ∗ (s1, s2, s3)(B ∗ (s2s4, s4, s2)C)

Lemma 2.2. (Commutativity) It holds that

A ∗ (s1, s2, s3)B = B ∗ (s2, s1, s3)A

Proof: This follows immediately from our definition of the tensor multiplication oper-
ator ∗(s1, s2, s3), the commutativity of the scalar multiplication, and the commutativity
of the set union operation.

Lemma 2.3. (Distributive property) Let s1, s2, and s3 be index sets with s3 ⊆ s1 ∪ s2.
It holds that

A ∗ (s1, s2, s3)B +A ∗ (s1, s2, s3)C = A ∗ (s1, s2, s3)(B + C)

Proof: This follows from the distributive property of scalar multiplication.
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3.4 Tensor calculus

Now we are prepared to develop our tensor calculus. We start by giving the definition of
the derivative of a tensor-valued expression with respect to a tensor. For the definition,
we use ∥A∥ =

√∑
sA[s]

2 as the norm of a tensor A, which coincides with the Euclidean
norm if A is a vector and with the Frobenius norm if A is a matrix.

Definition 3.1. (Fréchet Derivative) Let f : Rn1×n2×...×nk → Rm1×m2×...×ml be a
function that takes an order-k tensor as input and maps it to an order-l tensor as output.
Then, D ∈ Rm1×m2×...×ml×n1×n2×...×nk is called the derivative of f at x if and only if

lim
h→0

∥f(x+ h)− f(x)−D ◦ h∥
∥h∥

= 0,

where ◦ is an inner tensor product.
Here, the dot product notation D ◦ h is short for the inner product D ∗ (s1s2, s2, s1)h,

where s1s2 is the index set ofD and s2 is the index set of h. For instance, ifD ∈ Rm1×n1×n2

and h ∈ Rn1×n2 , then s1 = {i, j, k} and s2 = {j, k}.
In the following, we first describe forward and reverse mode automatic differentiation

for expressions in Einstein notation before we discuss extensions like cross-country mode
and compression of higher-order derivatives that are much easier to realize in Einstein
notation than in Ricci notation. As can be seen from our experiments in Section 4, these
extensions allow for significant performance gains.

3.4.1 Forward Mode

Any tensor expression has an associated directed acyclic expression graph (expression
DAG). Figure 1 shows the expression DAG for the expression

X > (exp(X · w) + 1)−1 exp(X · w) (1)

where · denotes the element-wise multiplication and −1 the element-wise multiplicative
inverse.

The nodes of the DAG that have no incoming edges represent the variables of the
expression and are referred to as input nodes. The nodes of the DAG that have no
outgoing edges represent the functions that the DAG computes and are referred to as
output nodes.

Let the DAG have n input nodes (variables) and m output nodes (functions). We
label the input nodes as x0, . . . , xn−1, the output nodes as y0, . . . , ym−1, and the internal
nodes as v0, . . . , vk−1. Every internal and every output node represents either a unary or
a binary operator. The arguments of these operators are supplied by the incoming edges.

In forward mode, for computing derivatives with respect to the input variable xj , each
node vi will eventually store the derivative ∂vi

∂xj
which is traditionally denoted as v̇i. It is

computed from input to output nodes as follows: At the input nodes that represent the
variables xi, the derivatives ∂xi

∂xj
are stored. Hence, these are either unit tensors if i = j or

zero tensors otherwise. Then, the derivatives
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Figure 3.4: Expression DAG for Expression (1)

that are stored at the remaining nodes, here called f , are iteratively computed by
summing over all their incoming edges as

ḟ =
∂f

∂xj
=

∑
z:(z,f)∈E

∂f

∂z
· ∂z
∂xj

=
∑

z:(z,f)∈E

∂f

∂z
· ż,

where ∂f
∂z is the partial derivative of node f with respect to z, and the multiplication

is tensorial. The so-called pushforwards ż of the predecessor nodes z of f have been
computed before and are stored at z. Hence, the derivative of each function is stored at
the corresponding output node y of the expression DAG. Obviously, the updates can be
done simultaneously for one input variable xj and all output nodes yi. Computing the
derivatives with respect to all input variables requires n such rounds.

In the following, we derive the explicit form of the pushforward for nodes of the ex-
pression DAG of a tensor expression. For such a DAG, we can distinguish four types
of nodes, namely multiplication nodes, general unary function nodes, element-wise unary
function nodes, and addition nodes. General unary functions are general tensor-valued
functions, while element-wise unary functions are applied to each entry of a single tensor.
The difference can be best explained by the difference between the matrix exponential
function (general unary function) and the ordinary exponential function applied to every
entry of the matrix (element-wise unary function). The pushforward for addition nodes
is trivially just the sum of the pushforward of the two summands. Thus, it only remains
to show how to compute the pushforward for multiplication, general unary functions, and
element-wise unary function nodes.

Theorem 3.2. Let x be an input variable with index set s4, and let C = A ∗
(s1, s2, s3)B be a multiplication node of the expression DAG. The pushforward of C is

Ċ = B ∗ (s2, s1s4, s3s4)Ȧ+A ∗ (s1, s2s4, s3s4)Ḃ.

Please note that this is a continuation of the previous LaTeX code I provided. You
should combine both parts to have a complete LaTeX document. Let me know if you need
any further assistance!

Proof: By the definition of the forward mode, the pushforward Ċ is given as

Ċ =
∂C

∂A
· Ȧ+

∂C

∂B
· Ḃ.
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We show first how to compute ∂C
∂B · Ḃ. According to Definition 4, it holds that

lim
h→0

1

∥h∥

∥∥∥B(x+ h)−B(x)− Ḃ ◦ h
∥∥∥ = 0.

We have the following sequence of equalities

C(x+h)−C(x)−Ċ◦h = A∗(s1, s2, s3)B(x+h)−A∗(s1, s2, s3)B(x)−
(
A ∗ (s1, s2s4, s3s4)Ḃ

)
◦h

= A ∗ (s1, s2, s3)B(x+ h)−A ∗ (s1, s2, s3)B(x)−
(
A ∗ (s1, s2s4, s3s4)Ḃ

)
∗ (s3s4, s4, s3)h

= A ∗ (s1, s2, s3)B(x+ h)−A ∗ (s1, s2, s3)B(x)−A ∗ (s1, s2, s3)
(
Ḃ ∗ (s2s4, s4, s2)h

)
= A ∗ (s1, s2, s3)

(
B(x+ h)−B(x)− Ḃ ◦ h

)
The first equality follows from the definition of Ċ, the second from the definition of

◦, the third from Lemma 1, the fourth from Lemma 3, and the last from the definition of
◦. Thus, we have

lim
h→0

1

∥h∥

∥∥∥C(x+ h)− C(x)− Ċ ◦ h
∥∥∥ = lim

h→0

1

∥h∥

∥∥∥A ∗ (s1, s2, s3)
(
B(x+ h)−B(x)− Ḃ ◦ h

)∥∥∥
≤ ∥A∥ lim

h→0

1

∥h∥

∥∥∥B(x+ h)−B(x)− Ḃ ◦ h
∥∥∥ = 0.

Hence, we get ∂C
∂B · Ḃ = A ∗ (s1, s2s4, s3s4)Ḃ. Similarly, we get that ∂C

∂A · Ȧ = B ∗
(s2, s1s4, s3s4)Ȧ. Combining the two equalities finishes the proof.

Theorem 3.3. Let x be an input variable with index set s3, let f be a general unary
function whose domain has index set s1 and whose range has index set s2, let A be a
node in the expression DAG, and let C = f(A). The pushforward of the node C is
Ċ = f ′(A) ∗ (s2s1, s1s3, s2s3)Ȧ, where f ′ is the derivative of f .

Proof: By Definition 4, we have

lim
h̃→0

1

∥h̃∥

∥∥∥f(A+ h̃)− f(A)− f ′(A) ◦ h̃
∥∥∥ = 0

Proof (continued): Let h̃ = A(x+h)−A(x). Since A is differentiable, we have that
h̃→ 0 as h→ 0. Furthermore, we have that ∥A(x+ h)−A(x)∥ ≤ 1

c∥h∥ for some suitable
constant c. Hence, we get

0 = lim
h→0

1

∥A(x+ h)−A(x)∥
∥∥f(A(x+ h))− f(A)− f ′(A) ◦ (A(x+ h)−A(x))

∥∥
≥ lim

h→0

c

∥h∥
∥∥f(A(x+ h))− f(A)− f ′(A) ◦ (A(x+ h)−A(x))

∥∥ (2)

By Definition 4, we also have that

lim
h→0

1

∥h∥

∥∥∥A(x+ h)−A(x)− Ȧ ◦ h
∥∥∥ = 0.

Hence, we can replace A(x+ h)−A(x) with Ȧ ◦ h in (2) and obtain

0 ≥ lim
h→0

c

∥h∥

∥∥∥(f(A(x+ h))− f(A)− f ′(A) ◦ (Ȧ ◦ h)
)∥∥∥ .
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Note that

f ′(A)◦(Ȧ◦h) = f ′(A(x))◦(Ȧ∗(s1s3, s3, s1)h) = f ′(A(x))∗(s2s1, s1, s2)(Ȧ∗(s1s3, s3, s1)h)

=
(
f ′(A(x)) ∗ (s2s1, s1s3, s2s3)Ȧ

)
∗ (s2s3, s3, s2)h =

(
f ′(A(x)) ∗ (s2s1, s1s3, s2s3)Ȧ

)
◦ h.

Hence, we obtain

0 ≥ lim
h→0

c

∥h∥

∥∥∥(f(A(x+ h))− f(A)−
(
f ′(A(x)) ∗ (s2s1, s1s3, s2s3)Ȧ

)
◦ h
)∥∥∥ .

Thus, we get Ċ = f ′(A) ∗ (s2s1, s1s3, s2s3)Ȧ as claimed. ■
Theorem 3.4. Let x be an input variable with index set s2, let f be an element-

wise unary function, let A be a node in the expression DAG with index set s1, and let
C = f(A) where f is applied element-wise. The pushforward of the node C is Ċ =
f ′(A) ∗ (s1, s1s2, s1s2)Ȧ, where f ′ is the derivative of f .

Proof (continued): By Definition 4, we have

lim
h→0

1

∥h∥

∥∥∥A(x+ h)−A(x)− Ȧ ◦ h
∥∥∥ = 0.

It follows that for every scalar tensor entry A(x)s, where s is the multi-index of the entry,
we have

lim
h→0

1

∥h∥

∣∣∣A(x+ h)s −A(x)s − (Ȧ ◦ h)s
∣∣∣ = 0.

Proof (continued): Let fh(A, x) = f(A(x + h)) − f(A(x)). Since f is applied
entrywise and f ′ is the derivative of f , we can apply the chain rule for the scalar case,
which gives us

lim
h→0

1

∥h∥

∣∣∣fh(A, x)s − f ′(A(x)s) · (Ȧ ◦ h)s
∣∣∣ = 0.

Since this equality holds for all multi-indices s, we can sum over these indices and obtain

lim
h→0

1

∥h∥

∥∥∥fh(A, x)− f ′(A(x)) ∗ (Ȧ ◦ h)
∥∥∥ = 0.

We have

f ′(A(x))∗(Ȧ◦h) = f ′(A(x))∗(Ȧ◦(A∗h)) = (f ′(A(x))∗(A∗(A∗h)))◦h = (f ′(A(x))∗(s1, s1s2, s1s2)Ȧ)◦h,

where the first and last equalities follow from the definition of ◦, and the second equality
follows from Lemma 1. Hence, we have

lim
h→0

1

∥h∥

∥∥∥fh(A, x)− (f ′(A(x)) ∗ (s1, s1s2, s1s2)Ȧ) ◦ h
∥∥∥ = 0.

Thus, we get Ċ = f ′(A) ∗ (s1, s1s2, s1s2)Ȧ, as claimed.

3.4.2 Reverse Mode

Reverse mode automatic differentiation proceeds similarly to the forward mode, but from
output to input nodes. Each node vi will eventually store the derivative

∂yj
∂vi

, which is
usually denoted as v̄i, where yj is the function to be differentiated. These derivatives are

computed as follows: First, the derivatives
∂yj
∂yi

are stored at the output nodes of the DAG.
Hence, again, these are either unit tensors if i = j or zero tensors otherwise. Then, the
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derivatives that are stored at the remaining nodes, here called z, are iteratively computed
by summing over all their outgoing edges as follows:

z̄ =
∂yj
∂z

=
∑

(z,f)∈E

∂yj
∂f

· ∂f
∂z

=
∑

(z,f)∈E

f̄ · ∂f
∂z
,

where the multiplication is again tensorial. The so-called pullbacks f̄ have been computed
before and are stored at the successor nodes f of z. This means the derivatives of the
function yj with respect to all the variables xi are stored at the corresponding input nodes
of the expression DAG. Computing the derivatives for all the output functions requires m
such rounds.

In the following, we describe the contribution of unary and binary operator nodes to
the pullback of their arguments. We have only two types of binary operators, namely
tensor addition and tensor multiplication. In the addition case, the contribution of C to
the pullback of both of its arguments is simply C̄. In Theorem 3.5, we derive the explicit
form of the contribution of a multiplication node to the pullback of its arguments. In
Theorem 3.6, we derive the contribution of a general unary function, and in Theorem 3.7,
we derive the contribution of an element-wise unary function node to its argument.

Theorem 3.4.1 Let Y be an output node with index set s4, and let C = A∗(s1, s2, s3)B be
a multiplication node of the expression DAG. Then the contribution of C to the pullback B̄
of B is C̄∗(s4s3, s1, s4s2)A, and its contribution to the pullback Ā of A is C̄∗(s4s3, s2, s4s1)B.

Proof: Here we only derive the contribution of C to the pullback B̄. Its contribution
to Ā can be computed analogously. The contribution of C to B̄ is C̄ · ∂C

∂B . By Definition

3.1, we have for the derivative C̄ = ∂Y
∂C of Y with respect to C that

lim
h̃→0

1

∥h̃∥

∥∥∥Y (C + h̃)− Y (C)− C̄ ◦ h̃
∥∥∥ = 0.

By specializing h̃ = A ∗ (s1, s2, s3)h, we get

Y (C + h̃)− Y (C)− C̄ ◦ h̃ = Y (A ∗ (s1, s2, s3)B +A ∗ (s1, s2, s3)h)
− Y (A ∗ (s1, s2, s3)B)− C̄ ◦ (A ∗ (s1, s2, s3)h)

= Y (A ∗ (s1, s2, s3)(B + h))− Y (A ∗ (s1, s2, s3)B)

− C̄ ∗ (s4s3, s3, s4)(A ∗ (s1, s2, s3)h)
= Y (A ∗ (s1, s2, s3)(B + h))− Y (A ∗ (s1, s2, s3)B)

− (C̄ ∗ (s4s3, s1, s4s2)A) ∗ (s4s2, s2, s4)h
= Y (A ∗ (s1, s2, s3)(B + h))− Y (A ∗ (s1, s2, s3)B)

− (C̄ ∗ (s4s3, s1, s4s2)A) ◦ h.

Furthermore, since f ′ is the derivative of f , we have

lim
h→0

1

∥h∥

∥∥∥h̃− f ′(A) ∗ (s2s1, s1, s2)h
∥∥∥ = 0. (4)

18



Combining Equations (3) and (4) gives

0 = lim
h̃→0

1

∥h̃∥

∥∥∥Y (f + h̃)− Y (f)− f̄ ◦ h̃
∥∥∥

= lim
h→0

1

∥h∥
∥∥Y (f(A+ h))− Y (f(A))− f̄(A) ◦ (f ′(A) ∗ (s2s1, s1, s2)h)

∥∥
= lim

h→0

1

∥h∥
∥∥Y (f(A+ h))− Y (f(A))− (f̄(A) ∗ (s3s2, s2, s3s1)f ′(A)) ∗ (s3s1, s1, s3)h

∥∥
= lim

h→0

1

∥h∥
∥∥Y (f(A+ h))− Y (f(A))− (f̄(A) ∗ (s3s2, s2, s3s1)f ′(A)) ◦ h

∥∥ .
Hence, the contribution of the node C to the pullback Ā is

∂Y

∂f
· ∂f
∂A

= f̄ ∗ (s3s2, s2s1, s3s1)f ′(A).

In case the general unary function is simply an element-wise unary function that is
applied element-wise to a tensor, Theorem 3.6 simplifies as follows.

Proof (continued)
The contribution of the node C to the pullback Ā is f̄ · ∂f

∂A . By Definition 4, we have

for the derivative f̄ = ∂Y
∂f of Y with respect to f that

lim
h̃→0

1

∥h̃∥

∥∥∥Y (f + h̃)− Y (f)− f̄ ◦ h̃
∥∥∥ = 0. (3)

By specializing h̃ = f(A+ h)− f(A) and setting f = f(A), we get

Y (f + h̃)− Y (f)− f̄ ◦ h̃ = Y (f(A+ h)− f(A) + f(A))− Y (f(A))− f̄(A) ◦ (f(A+ h)− f(A))

= Y (f(A+ h))− Y (f(A))− f̄(A) ◦ (f(A+ h)− f(A)).

Furthermore, since f ′ is the derivative of f , we have

lim
h→0

1

∥h∥

∥∥∥h̃− f ′(A) ∗ (s2s1, s1, s2)h
∥∥∥ = 0. (4)

Combining Equations (3) and (4) gives

0 = lim
h̃→0

1

∥h̃∥

∥∥∥Y (f + h̃)− Y (f)− f̄ ◦ h̃
∥∥∥

= lim
h→0

1

∥h∥
∥∥Y (f(A+ h))− Y (f(A))− f̄(A) ◦ (f ′(A) ∗ (s2s1, s1, s2)h)

∥∥
= lim

h→0

1

∥h∥
∥∥Y (f(A+ h))− Y (f(A))− (f̄(A) ∗ (s3s2, s2, s3s1)f ′(A)) ∗ (s3s1, s1, s3)h

∥∥
= lim

h→0

1

∥h∥
∥∥Y (f(A+ h))− Y (f(A))− (f̄(A) ∗ (s3s2, s2, s3s1)f ′(A)) ◦ h

∥∥ .
Hence, the contribution of the node C to the pullback Ā is

∂Y

∂f
· ∂f
∂A

= f̄ ∗ (s3s2, s2, s3s1)f ′(A).

In case the general unary function is simply an element-wise unary function that is
applied element-wise to a tensor, Theorem 3.6 simplifies as follows:
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Theorem 3.7. Let Y be an output function with index set s2, let f be an element-wise
unary function, let A be a node in the expression DAG with index set s1, and let C = f(A)
where f is applied element-wise. The contribution of the node C to the pullback Ā is

f̄ ∗ (s2s1, s1, s2s1)f ′(A),

where f ′ is the derivative of f .
Theorem 3.7. Let Y be an output function with index set s2, let f be an element-wise

unary function, let A be a node in the expression DAG with index set s1, and let C = f(A)
where f is applied element-wise. The contribution of the node C to the pullback Ā is

f̄ ∗ (s2s1, s1, s2s1)f ′(A),

where f ′ is the derivative of f .
Proof:
The contribution of the node C to the pullback Ā is f̄ · ∂f

∂A . By Definition 4, we have

for the derivative f̄ = ∂Y
∂f of Y with respect to f that

lim
h̃→0

1

∥h̃∥

∥∥∥Y (f + h̃)− Y (f)− f̄ ◦ h̃
∥∥∥ = 0. (5)

By specializing h̃ = f(A+ h)− f(A) and setting f = f(A), we get

Y (f + h̃)− Y (f)− f̄ ◦ h̃ = Y (f(A+ h)− f(A) + f(A))− Y (f(A))− f̄(A) ◦ (f(A+ h)− f(A))

= Y (f(A+ h))− Y (f(A))− f̄(A) ◦ (f(A+ h)− f(A)).

Furthermore, since f ′ is the derivative of f and f is an entrywise function, we have

lim
h→0

1

∥h∥

∥∥∥h̃− f ′(A) ∗ (s1, s1, s1)h
∥∥∥ = 0. (6)

Combining Equations (5) and (6) gives

0 = lim
h̃→0

1

∥h̃∥

∥∥∥Y (f + h̃)− Y (f)− f̄ ◦ h̃
∥∥∥

= lim
h→0

1

∥h∥
∥∥Y (f(A+ h))− Y (f(A))− f̄(A) ◦ (f ′(A) ∗ (s1, s1, s1)h)

∥∥
= lim

h→0

1

∥h∥
∥∥Y (f(A+ h))− Y (f(A))− (f̄(A) ∗ (s2s1, s1, s2)f ′(A)) ∗ (s2s1, s1, s2)h

∥∥
= lim

h→0

1

∥h∥
∥∥Y (f(A+ h))− Y (f(A))− (f̄(A) ∗ (s2s1, s1, s2)f ′(A)) ◦ h

∥∥ .
Hence, the contribution of the node C to the pullback Ā is

∂Y

∂f
· ∂f
∂A

= f̄ ∗ (s2s1, s1, s2s1)f ′(A).

3.4.3 Beyond Forward and Reverse Mode

Since the derivative of a function y with respect to an input variable x is the sum over all
partial derivatives along all paths from x to y (see, e.g., [7]), we can combine forward and
reverse mode. Using v̄ = ∂y

∂v and v̇ = ∂v
∂x , we get

∂y

∂x
=
∑
v∈S

v̄ ∗ (s1sv, svs2, s1s2)v̇,
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where sv is the index set of node v, s1 is the index set of the output function y, s2 is the
index set of the input node x, and S is the set of nodes in a cut of the expression DAG.
General combinations of forward and reverse mode lead to the so-called cross-country
mode. We will show that the differentiation of tensor expressions becomes even more
efficient by a special instantiation of the cross-country mode and by compressing higher-
order derivatives.

Cross-Country Mode. In both forward and reverse mode, derivatives are computed
as sums of products of partial derivatives. In general, the time for evaluating the deriva-
tives depends on the order by which the partial derivatives are multiplied. The two modes
multiply the partial derivatives in opposite order. Derivatives are multiplied from input
to output nodes in forward mode and vice versa in reverse mode.

If the output function is scalar-valued, then reverse mode is efficient for computing
the derivative with respect to all input variables. It is guaranteed that evaluating the
derivative takes at most six times the time for evaluating the function itself. In practice,
usually a factor of two is observed [7]. However, this is no longer true for non-scalar-
valued functions. In the latter case, the order of multiplying the partial derivatives has
a strong impact on the evaluation time, even for simple functions (see, e.g., Naumann
[24]). Reordering the multiplication order of the partial derivatives is known as cross-
country mode in the automatic differentiation literature [25]. Finding an optimal ordering
is NP-hard [26] in general.

However, it turns out that significant performance gains for derivatives of tensor ex-
pressions can be obtained by the re-ordering strategy that multiplies tensors in order of
their tensor order, i.e., multiplying vectors first, then matrices, and so on. We illustrate
this strategy with the following example:

f(x) = B · g(h(Ax)), (7)

where A and B are two matrices, x is a vector, and g(·) and h(·) are vector-valued functions
that also take a vector as input. The derivative in this case is Bdiag(u)diag(v)A, where
u = g′(h(Ax)), v = h′(Ax), and diag(u) is the diagonal matrix with u on its diagonal.
Reverse mode multiplies these matrices from left to right, while forward mode multiplies
them from right to left. However, it is more efficient to first multiply the two vectors u
and v element-wise and then multiply the result with the matrices A and B.

Actually, the structure of Example 7 is not contrived but fairly common in second-order
derivatives. For instance, consider the expression

∑
g(h(Ax)), where g and h are as above,

and the sum is over the vector components of the vector-valued expression g(h(Ax)). Many
machine learning problems feature such an expression as a subexpression, where A is a
data matrix and the optimization variable x is a parameter vector. The gradient of this
expression has the form of Example 7 with B = AT . As can be seen in the experiments in
Section 4, reordering the multiplications by our strategy reduces the time for evaluating
the Hessian by about 30%.

Compressing Derivatives. Our compression scheme builds on the reordering scheme
(cross-country mode) from above and on the simple observation that in forward as well as
in reverse mode, the first partial derivative is always a unit tensor. It is either, in reverse
mode, the derivative of the output nodes with respect to themselves or, in forward mode,
the derivative of the input nodes with respect to themselves. This unit tensor can always
be moved to the end of the multiplications if the order of multiplication is chosen exactly
as in our cross-country mode strategy that orders the tensors in increasing tensor order.
Then, the multiplication with the unit tensor at the end is either trivial, i.e., amounts to
a multiplication with a unit matrix that has no effect and thus can be removed, or leads
to a compactification of the derivative.
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For example, consider the loss function

f(U) =
∥∥T − UV T

∥∥2
of the non-regularized matrix factorization problem, which is often used for recommender
systems [27]. Here, T ∈ Rn×n, U , V ∈ Rn×k, and n is usually large while k is small. The
Hessian of f is the fourth-order tensor

H = 2(V ∗ (ij, ik, jk)V ) ∗ (jl, ik, ijkl)I ∈ Rn×k×n×k,

where I is the identity matrix. Newton-type algorithms for this problem solve the Newton
system, which takes time in O((nk)3). However, the Hessian can be compressed to 2(V ∗
(ij, ik, jk)V ), which is a small matrix of size k × k. This matrix can be inverted in O(k3)
time. The performance gain realized by compression can be significant. For instance,
solving the compressed Newton system needs only about 10µs, whereas solving the original
system needs about 1 second for a problem of size n = 1000 and k = 10. For more
experimental results, please refer to Section 4.

As another example, consider a simple neural net with a fixed number of fully connected
layers, ReLU activation functions, and a softmax cross-entropy output layer. The Hessian
of each layer is a fourth-order tensor that can be written as A∗(ijl, ik, ijkl)I for a suitable
third-order tensor A. In this case, the Hessian can be compressed from a fourth-order
tensor to a third-order tensor.

3.5 Optimizations and computational Graph

This section explores the role of the Universal Approximation Theorem [19], Stochastic
Gradient Descent (SGD) [20], Computational Graphs [21], and loss functions in optimizing
neural networks. The Universal Approximation Theorem guarantees that neural networks
can approximate any bounded and regular function. SGD is an optimization algorithm
that adjusts network parameters based on the gradients of a loss function to minimize
errors. Computational Graphs provide a graphical representation of operations, facilitat-
ing efficient computation and automatic differentiation [22]. The choice of an appropriate
loss function is crucial as it quantifies the discrepancy between predicted and target out-
puts. Together, these components form the foundation for optimizing and training neural
networks.

3.5.1 Universal approximation theorem

Hornik (1991) [19] showed that any bounded and regular function f : Rd → R can be
approximated at any given precision by a neural network with one hidden layer containing
a finite number of neurons, having the same activation function, and one linear output
neuron. This result was earlier proved by Cybenko (1989) in the particular case of the
sigmoid activation function. More precisely, Hornik’s theorem can be stated as follows:

Theorem 1. Let φ be a bounded, continuous, and non-decreasing (activation) func-
tion. Let Kd be some compact set in Rd and C(Kd) the set of continuous functions on
Kd. Let f ∈ C(Kd). Then, for all ε > 0, there exists N ∈ N, real numbers vi, bi, and
Rd-vectors wi such that, if we define

F (x) =
N∑
i=1

viφ(⟨wi, x⟩+ bi)
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then we have
∀x ∈ Kd, |F (x)− f(x)| ≤ ε.

This theorem is interesting from a theoretical point of view. From a practical point
of view, this is not really useful since the number of neurons in the hidden layer may be
very large. The strength of deep learning lies in the depth (number of hidden layers) of
the networks following 3.5 illustrate

Figure 3.5: Modeling Complex Functions Neural network

3.5.2 Estimation of the parameters

After selecting the architecture of the neural network, the next step is to estimate its
parameters, namely the weights (wj) and biases (bj), using a learning sample. This es-
timation is achieved by minimizing a loss function with a gradient descent algorithm.
The choice of the loss function is crucial and depends on the specific task at hand. It
quantifies the discrepancy between the network’s predicted output and the true target
values in the training data. The most commonly used loss functions include mean squared
error (MSE) for regression problems, binary cross-entropy for binary classification, and
categorical cross-entropy for multi-class classification. The selection of the appropriate
loss function is guided by the properties of the problem and the desired behavior of the
neural network. By minimizing the chosen loss function through techniques like gradient
descent, the network’s parameters are iteratively adjusted to enhance the model’s predic-
tions on the training data. This optimization process aims to find the optimal values for
the weights and biases, reducing the difference between the predicted and true values and
ultimately improving the accuracy and effectiveness of the neural network.

2.3.2.1 Loss Function

In classical estimation, it is common to maximize the likelihood [23] (or equivalently the
logarithm of the likelihood) to estimate the parameters. This is equivalent to minimizing
the loss function, which is the negative logarithm of the likelihood. For parameter vector
θ estimation, we consider the expected loss function:

L(θ) = −E(X,Y )∼P

(
∥Y − f(X, θ)∥2

)
If the model is Gaussian, meaning pθ(Y |X = x) ∼ N (f(x, θ), I), maximizing the

likelihood is equivalent to minimizing the quadratic loss:

L(θ) = E(X,Y )∼P

(
∥Y − f(X, θ)∥2

)
For binary classification, where Y ∈ {0, 1}, maximizing the log-likelihood corresponds

to minimizing the mean squared error. By setting f(X, θ) = pθ(Y = 1|X), the loss
function becomes:

23



L(θ) = −E(X,Y )∼P [Y log(f(X, θ)) + (1− Y ) log(1− f(X, θ))]

This loss function is well-suited when using the sigmoid activation function, as the
logarithm helps avoid very small gradient values.

Finally, for a multi-class classification problem with k classes, we generalize the previ-
ous loss function:

L(θ) = −E(X,Y )∼P

 k∑
j=1

1Y=j log pθ(Y = j|X)


Ideally, we would like to minimize the classification error directly [24], but since it is

non-smooth, we consider the cross-entropy loss (or a suitable convex surrogate) instead.

2.3.2.2 Stochastic Gradient Descent Algorithm

In optimization problems, Stochastic Gradient Descent (SGD) is a popular and efficient
algorithm used to find the minimum of a cost function. It is particularly useful when
dealing with large datasets or complex models. SGD belongs to the family of iterative
optimization algorithms and is widely used in machine learning and deep learning. The
main idea behind SGD is to estimate the gradient of the cost function by using a random
subset of training examples at each iteration, instead of considering the entire dataset.
This random subset is often referred to as a ”mini-batch.” By using mini-batches, SGD is
able to perform updates to the model parameters more frequently, leading to faster conver-
gence compared to traditional gradient descent methods. SGD follows an iterative update
process, where at each iteration, the model parameters are adjusted in the direction that
reduces the cost function. The algorithm repeats this process until it reaches convergence
or a predefined stopping criterion

Consider the task of minimizing an average of functions:

min
x

1

n

n∑
i=1

fi(x)

This setting is common in machine learning, where the average of functions corresponds
to a loss function, and each fi(x) is associated with the loss term of an individual sample
point xi. The full gradient descent step is given by:

x(k) = x(k−1) − tk ·
1

n

n∑
i=1

∇fi(x(k−1)), k = 1, 2, 3, . . .

The idea behind stochastic gradient descent (SGD) is to approximate the full gradient
by using a subset of all samples, i.e., a subset of the possible fi(x)’s. following 3.6More
formally, the stochastic gradient descent algorithm 2. performs the following iteration:

x(k) = x(k−1) − tk · ∇fik(x
(k−1)), k = 1, 2, 3, . . .

where ik ∈ {1, . . . , n} is a randomly chosen index at iteration k. Since E[∇fik(x)] =
∇f(x), the estimate is unbiased. The indices ik are usually chosen without replacement
until one full cycle through the entire data set is completed.
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Algorithm 2 The Stochastic Gradient Descent algorithm; different choices of the learning
rate γ may affect convergence.

Require: initial weights w(0), number of iterations T
Ensure: final weights w(T )

1: for t = 0 to T − 1 do
2: randomly select training sample (Xi, Yi)
3: compute gradient ∇L(w(t);Xi, Yi)
4: select learning rate γ
5: update weights: w(t+1) := w(t) − γ∇L(w(t);Xi, Yi)
6: end for
7: return w(T )

−2 −1 0 1 2−2

0

2
−4

−2

0

2

4

Figure 3.6: Visualization of the SGD optimization landscape. The plot represents the
surface z = x2 − y2 in three dimensions. The goal of the SGD algorithm is to find the
minimum of this surface.

3.5.3 Automatic Differentiation

Automatic differentiation is a powerful technique used in computational mathematics and
machine learning to efficiently compute derivatives of functions. It provides a systematic
way of evaluating derivatives by decomposing complex functions into a series of elementary
operations. At its core, automatic differentiation leverages the chain rule of calculus to
compute derivatives. By representing functions as compositions of elementary operations,
it allows for the calculation of derivatives with respect to input variables or parameters.

The process of automatic differentiation involves building a computational graph that
represents the function and its intermediate values. The computational graph is a directed
acyclic graph where nodes correspond to operations and edges represent dependencies
between them. During the forward pass through the computational graph, each node
performs its specific operation and passes the computed value to the next node. This
process continues until the final output of the function is obtained. Importantly, the
graph also records the derivative of each node with respect to its inputs.

Once the forward pass is completed, the reverse pass, known as back-propagation, is
performed to compute the gradients of the function’s output with respect to its inputs.
The back-propagation process traverses the computational graph in reverse, starting from
the output and propagating the derivatives backward through the graph. During back-
propagation, each node in the computational graph receives the derivative from the previ-

25



ous node and multiplies it by its own local derivative. This multiplication corresponds to
the application of the chain rule. The computed derivatives are then used to update the
parameters of the function through an optimization algorithm, such as gradient descent.

By combining the forward and backward passes, automatic differentiation enables effi-
cient and accurate computation of gradients. It eliminates the need for manual derivation
and reduces computational complexity, making it a fundamental technique in various
fields, particularly in deep learning. In the following subsections, we will delve into the
details of the computational graph and the back-propagation algorithm, which are the key
components of automatic differentiation.

2.3.3.1 Computational Graphs

A computational graph is a fundamental concept in the field of automatic differentiation
and serves as a graphical representation of a mathematical expression or a computational
process. It consists of nodes that represent variables or operations and edges that denote
the flow of data between them. In a computational graph, variables are represented as
nodes that hold values, while operations are depicted as nodes that perform mathematical
computations on their input values. The connections between nodes are directed edges that
indicate the flow of data from one node to another. To better understand the concept,
let’s consider an example. Suppose we have two input variables, denoted as and, and
we want to compute their sum. We can construct a computational graph to represent
this computation. In this graph, and are represented as input nodes, while the addition
operation is depicted as an operation node.

The computational graph for the sum of and would look like this:

x y

Addition

z

Figure 3.7: Computational graph for the sum of variables x and y.

In this graph, the nodes labeled represent the input variables, while the node labeled
represents the addition operation. The output of the addition operation is denoted as ,
which is another variable node.

By following the connections and operations in the graph, we can compute the value
of by evaluating the sum of and. Computational graphs allow us to visualize and un-
derstand complex mathematical expressions or computational processes. They provide a
clear representation of how variables and operations are interconnected and how data flows
through the graph during computation. In the next subsection, we will explore the back-
propagation algorithm, which is used to efficiently compute gradients in computational
graphs, making it a crucial component of automatic differentiation.

2.3.3.2 Computational Graphs and the Chain Rule of Differentiation

We started by introducing computational graphs as a simple visualization of the flow of
data in the previous section within a typical machine learning system (neural networks as

26



prime examples) by defining the sequence(s) of computations necessary to calculate the end
result. The final step in a computational graph (when learning) is the calculation of the
loss that quantifies the error that the system makes when processing specific data. These
computational graphs provide not only describe the ‘forward’ flow of the data but in case
we are interested in the derivatives of In order to understand automatic differentiation we
first have to look at computational graphs. Then using these graphs we look at automatic
differentiation

A computational graph describes the flow of data throughout a computation. Consider
the expression z = log(3x2+5xy). In a graph, this can be depicted as shown in the figure
below.

z = z(x, y)

a = x2 b = 3a c = xy

d = 5c

e = b+ d

Figure 3.8: Computational graph representing the expression z = log(3x2 + 5xy).

We are going to use automatic differentiation to calculate ∂z
∂x and ∂z

∂y . To start, let’s
focus on the node representing the expression z = z(x, y), which is part of a larger graph
ending up with the final scalar value ℓ. Assuming we have already calculated ∂ℓ

∂z , we want

to determine the derivatives ∂ℓ
∂x and ∂ℓ

∂y .
Applying the chain rule, we have:

∂

∂x
ℓ(z(x, y)) =

∂ℓ

∂z
· ∂z
∂x
,

and

∂

∂y
ℓ(z(x, y)) =

∂ℓ

∂z
· ∂z
∂y
.

It should be noted that the notation ℓ(z(x, y)) can be misleading. It is used here to
illustrate that ℓ depends on z. In a complex graph, ℓ may depend on many other values.

The key observation is that for any node in the graph, if we have the derivative of the
output ℓ of the entire graph with respect to the output of that particular node, we can
calculate the derivative of ℓ with respect to the inputs of that node. This allows us to prop-
agate the derivative calculations from the end of the graph backwards to the beginning.
This process is essentially what backpropagation does in neural network learning.

Let’s apply these concepts to the example z = log(3x2 + 5xy). Using the chain rule
and basic derivative rules, we can calculate the partial derivatives as follows:

∂z

∂x
=

6x+ 5y

3x2 + 5xy
,

∂z

∂y
=

5x

3x2 + 5xy
.

To verify these results using the computational graph, we redraw the graph and assign
names to all the arrows (values) for ease of reference:
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a = x2,

b = 3a,

c = xy,

d = 5c,

e = b+ d,

z = log(e).

Working from the end to the start, we can calculate the following partial derivatives:

∂z

∂e
=

1

e
,

∂z

∂b
=
∂z

∂e
· ∂e
∂b
,

∂z

∂d
=
∂z

∂e
· ∂e
∂d
,

∂z

∂a
=
∂z

∂b
· ∂b
∂a
,

∂z

∂c
=
∂z

∂d
· ∂d
∂c
,

∂z

∂y
=
∂z

∂c
· ∂c
∂y
.

To calculate ∂z
∂x , we observe that the value of x is fed into two nodes in the graph.

Therefore, in the backward pass, we need to calculate the derivatives ∂a
∂x ,

∂z
∂a ,

∂c
∂x , and

∂z
∂c

to obtain ∂z
∂x . Specifically:

∂z

∂x
=
∂a

∂x
· ∂z
∂a

+
∂c

∂x
· ∂z
∂c

= 2x · ∂z
∂a

+ y · ∂z
∂c
.

Substituting the calculated values, we obtain:

∂z

∂x
=

6x

3x2 + 5xy
+

5y

3x2 + 5xy
=

6x+ 5y

3x2 + 5xy
.

Hence, we have successfully reproduced the derivative ∂z
∂x = 6x+5y

3x2+5xy
using the compu-

tational graph.

2.3.3.4 Back-Propagation

After understanding how the derivatives flow through a computational graph using the
chain rule, we can delve into the process of backpropagation. Backpropagation is a funda-
mental algorithm used in neural network training to efficiently compute the gradients of
the loss function with respect to the network’s parameters. The goal of backpropagation
is to adjust the parameters of the network in a way that minimizes the loss function.
By calculating the gradients of the loss function with respect to each parameter, we can
update the parameters in the opposite direction of the gradients, gradually reducing the
loss. he process of backpropagation can be summarized in the following steps:

1. Forward Pass: During the forward pass, input data is fed into the network, and the
activations of each node in the computational graph are computed layer by layer. The
final output of the network is obtained.

2. Loss Calculation: The loss function, which measures the discrepancy between the
network’s output and the desired output, is evaluated based on the final output.
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3. Backward Pass: Starting from the output layer, the derivative of the loss with
respect to each parameter is computed using the chain rule. The derivatives are propagated
backward through the computational graph, calculating the gradients of the loss function
with respect to each node’s inputs.

4. Parameter Update: Once the gradients of the loss function with respect to the net-
work parameters are obtained, the parameters are updated using optimization algorithms
such as gradient descent or its variants. The update step adjusts the parameters in a
direction that minimizes the loss function.

5. Iterative Process: Steps 1 to 4 are repeated iteratively for multiple mini-batches
of training examples. The gradients are accumulated over the mini-batches, and the
parameter updates are performed to refine the network’s weights and biases.

Backpropagation allows for efficient computation of gradients in deep neural networks
with multiple layers and millions of parameters. By leveraging the chain rule and prop-
agating the gradients backward through the computational graph, it avoids redundant
computations and enables efficient parameter updates general Overview algorithm.

Algorithm 3 Back-propagation Algorithm

Require: Current minibatch of samples (Xi, Yi)
Ensure: Updated weights and biases
1: for i = 1 to M do ▷ Loop over minibatch samples
2: Perform forward pass: calculate weighted inputs z and activations a for each layer
3: Calculate errors δ for each layer using back-propagation, starting from the last

hidden layer
4: Calculate weight gradients: ∇wC

i and bias gradients: ∇bCi using the last two
equations

5: end for
6: Update weight gradients:

∑M
i=1∇wC

i → ∇wC and bias gradients:
∑M

i=1∇bCi → ∇bC
7: Update weights and biases using the gradient estimates

Back-Propagation has played a crucial role in the success of deep learning, enabling the
training of complex models on large datasets. It has become a cornerstone algorithm for
training deep neural networks and has led to significant advancements in various domains,
including computer vision, natural language processing, and reinforcement learning. Un-
derstanding backpropagation provides insights into the inner workings of neural networks
and empowers researchers and practitioners to design and train more effective models.
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4 Chapter Methods andMicro-Framework
Modeling

n this chapter, we will delve into the building blocks of our micro-framework called Nano-
AutoGard, which is based on the NumPy package. We will break down the details into sub-
sections to provide a comprehensive explanation of each component. Our goal is to develop
a lightweight framework that allows users to understand and implement neural networks
from scratch using a minimalistic approach. By leveraging the power of NumPy, a popular
numerical computing library in Python, we can efficiently perform matrix operations and
automatic differentiation, which are essential for training neural networks.

Throughout this chapter, we will cover various aspects of the Nano-AutoGard frame-
work, including the construction of neural network architectures, the implementation of
forward and backward passes, the calculation of gradients using automatic differentiation,
and the optimization of network parameters using gradient-based algorithms. Now, let’s
dive into the sub-sections and explore each part of the Nano-AutoGard micro-framework
in detail, starting with the construction of neural network architectures.

4.1 Micro-Framework Modeling

In this sub-section, we introduce our micro-framework called Nano-AutoGrad shown ar-
chitecture modeling in 4.1. It is a tiny autograd engine that implements backpropagation,
also known as reverse-mode auto diff. The engine is built on top of a dynamically built
Directed Acyclic Graph (DAG), The Nano-AutoGrad engine consists of approximately
100 lines of code, making it extremely lightweight and easy to understand. It offers the
capability to perform automatic differentiation on scalar values within the graph. Each
computation in the graph, such as addition, multiplication, and exponentiation, is broken
down into its individual components to enable backpropagation. One of the main advan-

tages of Nano-AutoGrad is its educational value. It serves as a useful tool for understand-
ing the inner workings of automatic differentiation and backpropagation algorithms.In
the following subsections, we will delve into the key components and functionalities of the
Nano-AutoGrad micro-framework, providing a detailed explanation of its implementation.
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Figure 4.1: Micro-Framework Modeling Nano-AutoGrad (a): Linear Module includes all
necessary components to initialize weight Matrix and mathematical logic, (b): AutoGrad
is Engine responsible for computing function derivative Order built on top of a dynami-
cally built Directed Acyclic Graph (DAG) (c): Optimizer SGD to update Weight model
Through Back-Propagation (d): Activation Func collection of the non-linear function used
for connectivity between Layer

4.1.1 Micro-Framework documentation

1. Initialize Weight:

1 class Module:

2

3 def zero_grad(self):

4 """

5 Set the gradients of all parameters in the module to zero.

6 """

7 for p in self.parameters ():

8 p.grad = 0

9

10 def parameters(self):

11 """

12 Return a list of all parameters in the module.

13 """

14 return []

initializes the weight by assigning a random value within the range [-1, 1] if no data
is provided. It also initializes the gradient to 0.

2. Mathematical Operations:

1 def __add__(self , other):

2 other = other if isinstance(other , Value) else Value(other)

3 out = Value(self.data + other.data , (self , other), ’+’)

4

5 def _backward(keep_graph=False):

6 self.grad += out.grad
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7 other.grad += out.grad

8 out._backward = _backward

9

10 return out

11

12 def __mul__(self , other):

13 other = other if isinstance(other , Value) else Value(other)

14 out = Value(self.data * other.data , (self , other), ’*’)

15

16 def _backward(keep_graph=False):

17 if keep_graph:

18 self.grad += other * out.grad

19 other.grad += self * out.grad

20 else:

21 self.grad += other.data * out.grad

22 other.grad += self.data * out.grad

23 out._backward = _backward

24

25 return out

26

27 def __pow__(self , other):

28 assert isinstance(other , (int , float)), "only supporting int/

float powers for now"

29 out = Value(self.data**other , (self ,), f’**{ other}’)

30

31 def _backward(keep_graph=False):

32 if keep_graph:

33 self.grad += (other * self **(other -1)) * out.grad

34 else:

35 self.grad += (other * self.data **(other -1)) * out.grad

36 out._backward = _backward

37

38 return out

39

40 def __neg__(self): # -self

41 return self * -1

42

43 def __radd__(self , other): # other + self

44 return self + other

45

46 def __sub__(self , other): # self - other

47 return self + (-other)

48

49 def __rsub__(self , other): # other - self

50 return other + (-self)

This block defines various mathematical operations for the values in the micro-
framework. For example, neg calculates the negative value, add performs addition,
sub performs subtraction, and so on. The repr method returns a string representa-
tion of the value.

3. AutoGrad:

1 def backward(self):

2

3 # topological order all of the children in the graph

4 topo = []

5 visited = set()

6 def build_topo(v):

7 if v not in visited:

8 visited.add(v)
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9 for child in v._prev:

10 build_topo(child)

11 topo.append(v)

12 build_topo(self)

13

14 # go one variable at a time and apply the chain rule to get

its gradient

15 self.grad = 1

16 for v in reversed(topo):

17 v._backward ()

This code implements the backward pass or backpropagation in the AutoGrad en-
gine. It creates a topological order of all the nodes in the graph and then applies the
chain rule to calculate the gradients of each variable. The ‘backward‘ method sets
the gradient to 1 and applies the backwardfunction for each variable in the reversed
topological order.

1. Function Backward steps:

(a) Initialize an empty list topo to store the variables in topological order and a
set visited to keep track of visited variables.

(b) Define a helper function buildtopo(v) that performs a depth-first search (DFS)
traversal of the computational graph starting from variable v. This function
recursively visits all the children of v and adds them to the topo list.

(c) In the buildtopo function:

i. Check if the variable v has been visited before. If not, add it to the visited
set to mark it as visited.

ii. For each child variable child in v.prev (the children of v in the compu-
tational graph), recursively call buildtopo(child) to visit the child variable
and its descendants.

iii. Append the current variable v to the topo list.

(d) Call the buildtopo function with self as the starting variable. This will traverse
the computational graph and populate the topo list with variables in topological
order.

(e) Set the gradient of self to 1, indicating the starting point for the chain rule
computation.

(f) Iterate over the variables in topo in reverse order (from last to first) using
the reversed function. For each variable v, call the backward method of v.
This method applies the chain rule to update the gradient of v based on its
dependencies and the gradients of its children.

By performing the topological sorting, the algorithm ensures that each variable’s
gradient is computed correctly based on the order of operations in the computational
graph. This allows for an efficient and accurate computation of gradients during
backpropagation.
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Algorithm 4 Topological Sorting

1: procedure BuildTopo(v)
2: if v is not visited then
3: Mark v as visited
4: for each child c in v.prev do
5: BuildTopo(c) ▷ Recursive call
6: end for
7: Append v to topo list
8: end if
9: end procedure

10: procedure Backward
11: Initialize an empty topo list
12: Initialize an empty visited set
13: BuildTopo(self) ▷ Build topological order
14: Set the gradient of self to 1
15: for each variable v in reverse order of topo do
16: Call v.backward() ▷ Apply chain rule
17: end for
18: end procedure

2. Algorithm Topology sorting DAG: The algorithm consists of two procedures
BuildTopo and Backward. The BuildTopo procedure performs a depth-first
search traversal of the computational graph starting from a variable v. It recursively
visits all the children of v and adds them to the topo list in topological order. The
visited set is used to keep track of visited variables to avoid revisiting them.

The Backward procedure initializes an empty topo list and visited set. It then calls
BuildTopo to build the topological order by traversing the computational graph
starting from the variable self . The gradient of self is set to 1 to indicate the
starting point for the chain rule computation. Finally, it iterates over the variables
in reverse order of topo and calls their backward() method to apply the chain rule
and update the gradients.

By following this algorithm, the variables’ gradients can be computed correctly and
efficiently during the backward pass of the autograd process.

4. Activation Functions:

1 def relu(self):

2 out = Value(0 if self.data < 0 else self.data , (self ,), ’ReLU’

)

3

4 def _backward(keep_graph=False):

5 self.grad += (out.data > 0) * out.grad

6 out._backward = _backward

7

8 return out

9

10 def softmax(self):

11

12 out = Value(np.exp(self.data) / np.sum(np.exp(self.data),

axis =1)[:, None], (self ,), ’softmax ’)

13 softmax = out.data
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14 def _backward ():

15 self.grad += (out.grad - np.reshape(

16 np.sum(out.grad * softmax , 1),

17 [-1, 1]

18 )) * softmax

19 out._backward = _backward

20

21 return out

the defined activation functions used in the micro-framework. The relu function
calculates the Rectified Linear Unit (ReLU) activation, and the softmax function
computes the softmax activation. Both functions also include the backward pass
calculations for gradient computation.

4.1.2 Building Neural network using Nano-AutoGrad

After we dive into how we built our Nano-Grad a micro-Framework Engine here we will
provide some examples of how to build an MLP model and Linear model using Nano-
AutoGrad.

Building Neural Network Linear Model

1. Multi-Layer Perceptron (MLP) a feed-forward artificial neural network that
generates a set of outputs from a set of inputs. An MLP is characterized by several
layers of input nodes connected as a directed graph between the input and output
layers.

1

2 from autograd.core.engine import Value

3 from autograd.core.nn import MLP , Layer , Module

4

5

6 class MLP(Module):

7

8 def __init__(self , nin , nouts):

9 sz = [nin] + nouts

10 self.layers = [Layer(sz[i], sz[i+1], nonlin=i!=len(nouts) -1)

for i in range(len(nouts))]

11

12 def __call__(self , x):

13 for layer in self.layers:

14 x = layer(x)

15 return x

16

17 def parameters(self):

18 return [p for layer in self.layers for p in layer.parameters ()

]

19

20 def __repr__(self):

21 return f"MLP of [{’, ’.join(str(layer) for layer in self.

layers)}]"

2. Linear Model: module that creates layer feed-forward network with n inputs and
m output which we provide similar Pipeline as Pytorch

1

2 import autograd.torch.nn as nn

3 import autograd.torch.tensor as Tensor
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4 import autograd.torch.optim as SGD

5 import autograd.functiona as F

6

7 class Model(nn.Module):

8 def __init__(self):

9 super ().__init__ ()

10 self.l1 = nn.Linear (784, 1568, name=’l1’)

11 self.l2 = nn.Linear (1568, 392, name=’l2’)

12 self.l3 = nn.Linear (392, 10, name=’l3’)

13

14 def forward(self , x):

15 z = F.relu(self.l1(x))

16 z = F.relu(self.l2(z))

17 out = F.log_softmax(self.l3(z))

18 return out

19

20 model = Model()

21 optimizer = autograd.optim.SGD(model.parameters (), lr=5e-2,

weight_decay =1e-4)

22 scheduler = autograd.optim.lr_scheduler.LinearLR(optimizer ,

start_factor =1.0, end_factor =0.75, total_iters=num_epochs)

Training Neural Network Linear Model

1. Loss function: a function that calculates the error or discrepancy between pre-
dicted and actual values

1 def binary_cross_entropy(input , target):

2 """

3 Computes the binary cross entropy loss between input and target

tensors.

4

5 Args:

6 input: The input tensor.

7 target: The target tensor.

8

9 Returns:

10 The binary cross entropy loss.

11 """

12 return -(target * input.log() + (1 - target) * (1 - input).log()).

sum() / target.shape [0]

13

14

15 def nll_loss(input , target):

16 """

17 Computes the negative log likelihood loss between input and target

tensors.

18

19 Args:

20 input: The input tensor.

21 target: The target tensor.

22

23 Returns:

24 The negative log likelihood loss.

25 """

26 return -(input * target).sum() / target.shape [0]

27

28

29 def mse_loss(input , target):

30 """
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31 Computes the mean squared error (MSE) loss between input and

target tensors.

32

33 Args:

34 input: The input tensor.

35 target: The target tensor.

36

37 Returns:

38 The mean squared error loss.

39 """

40 return (( input - target) ** 2).mean()

41

42

43 def huber_loss(input , target , delta =1.0):

44 """

45 Computes the Huber loss between input and target tensors.

46

47 Args:

48 input: The input tensor.

49 target: The target tensor.

50 delta: The threshold for the absolute error.

51

52 Returns:

53 The Huber loss.

54 """

55 error = input - target

56 abs_error = abs(error)

57 quadratic = 0.5 * (error ** 2)

58 linear = delta * (abs_error - 0.5 * delta)

59 return np.where(abs_error <= delta , quadratic , linear).mean()

2. Training Model learning (determining) good values for all the weights and the
bias from labeled examples

1 import autograd.torch.tensor as Tensor

2 import autograd.torch.optim as SGD

3 import autograd.functiona as F

4

5 for k in range(num_epochs):

6 accuracy = 0

7 train_loss = 0

8 for batch in range(num_batches):

9 inputs = autograd.Tensor(X_train[batch * batch_size :(batch +

1) * batch_size ])

10 labels = autograd.Tensor(np.eye (10)[y_train[batch * batch_size

:( batch + 1) * batch_size ]])

11

12 # Forward

13 preds = model(inputs)

14 loss = F.nll_loss(preds , labels)

15

16 # Backward

17 optimizer.zero_grad ()

18 loss.backward ()

19

20 # Update (SGD)

21 optimizer.step()

22

23 accuracy += int(np.count_nonzero(np.argmax(preds.data , axis

=-1) == np.argmax(labels.data , axis=-1)))

24 train_loss += loss.data.item()
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25

26 scheduler.step()

27

28 accuracy /= X_train.shape [0]

29 train_loss /= X_train.shape [0]

30 train_accuracies.append(accuracy)

31 train_losses.append(train_loss)

32

33 with autograd.no_grad ():

34 preds_t = model(inputs_t)

35 loss_t = F.nll_loss(preds_t , labels_t).data.item()

36

37 accuracy_t = int(np.count_nonzero(np.argmax(preds_t.data , axis=-1)

== np.argmax(labels_t.data , axis=-1))) / X_test.shape [0]

38 test_accuracies.append(accuracy_t)

39 test_losses.append(loss_t)

40

41 print(f"Epoch {k+1} loss {train_loss :.6f}, accuracy {accuracy *

100:.6f}% test loss {loss_t :.6f}, test accuracy {accuracy_t *

100:.6f}% lr {optimizer.lr:.6f}")

Graph Update weights(DAG): After the model finished training we can get the
Graph Update weights which are based on the computational Graph process where the
update wights have been calculated through the Back-Propagation algorithm following 4.2

Figure 4.2: Graph Update weights(DAG) Update weights

4.2 Data collection

To demonstrate the capabilities of our Nano-AutoGrad micro-Framework in approximating
functions and solving basic problems, we will implement a pipeline using two distinct
datasets: MNIST digit recognition and the make moons dataset from scikit-learn

1. MNIST Digit Recognition Dataset: The MNIST dataset 4.3is widely used as a
benchmark dataset for image classification tasks. It comprises a collection of 28x28
grayscale images depicting handwritten digits ranging from 0 to 9. The objective is
to train a model capable of accurately classifying these digits.

2. make moons Dataset: The make moons dataset 4.4 is a synthetic dataset pro-
vided by the scikit− learn library. It is commonly employed for binary classification
problems. The dataset consists of 2D points arranged in the shape of two interleav-
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Figure 4.3: Samples Data Minist Digit

ing half-moons. The goal is to learn a model capable of effectively separating the
points into their respective classes.

Figure 4.4: Generating Data from make moons Distribution Function
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5 Chapter Experiment

One of the main motivations for developing and deploying AI applications is the desire
to provide user-friendly models for making predictions. In our technology stack, we have
utilized Gradio, an open-source Python library, to create machine learning and data science
demos and web applications 5.1.

Figure 5.1: our web application interface

Through our application, we have demonstrated that training models and fine-tuning
hyperparameters 5.2 can greatly impact their performance.

Figure 5.2: Hyper-Parameters Tuning Setting and Specify Task

1. In the experiment Results

1. Minist Classification Experiment
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Figure 5.3: Training Step Plot of the Loss Function and Accuracy

The figure in Figure 5.3 shows the training step plot of the loss function and ac-
curacy on the Minist dataset. The loss function represents the difference between
the predicted and actual values, while the accuracy measures the model’s ability
to correctly classify the digits. The accuracy can be computed using the following
equation:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
× 100%

Figure 5.4: Output Prediction of Digits

Figure 5.4 displays the output predictions of the model on the Minist dataset. Each
digit image is classified into its corresponding label, representing the model’s ability
to recognize and classify handwritten digits.

2. Sparsity Distribution Data Points 2D
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Figure 5.5: Output of Approximation of Sparsity Between 2D Data Point Samples

Figure 5.5 illustrates the output of the model’s approximation of sparsity between
2D data point samples. The model identifies and represents the sparsity patterns in
the data, allowing for a better understanding and analysis of the distribution.

These visualizations and results demonstrate the performance and capabilities of the
Nano-AutoGrad micro-framework on different datasets, including the Minist dataset
for digit recognition and the sparsity distribution of 2D data points.

2. In our conclusion from the experiment following

1. Conclusion 1: Each specific problem may require a different model design that can
effectively handle the data and extract relevant features. It is crucial to choose a
model architecture that is well-suited for the task at hand in order to achieve optimal
performance.

2. Conclusion 2: Hyperparameters play a critical role in model performance. By
carefully tuning these hyperparameters, we can improve the model’s performance
and achieve better results. Researchers have explored various techniques, such as
genetic algorithms or random search, to automate the process of hyperparameter
tuning and optimize model performance.
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6 Chapter Discussion

In this chapter, we will delve into the discussions and key findings related to the Nano-
AutoGrad micro-framework. We will analyze its capabilities, limitations, and implications
based on our experiments and study. Additionally, we will explore potential use cases,
challenges encountered during its implementation, and the significance of our findings.

6.1 Capabilities and Applications of Nano-AutoGrad

Here, we will discuss the capabilities and potential applications of the Nano-AutoGrad
micro-framework. We will highlight its usefulness in function approximation, solving bi-
nary classification problems, and handling sparsity-related challenges. Furthermore, we
will explore its potential for educational purposes and its ability to build deep neural
networks.

6.2 Limitations and Challenges

While Nano-AutoGrad shows promise, it is important to acknowledge its limitations and
challenges. Some of the limitations and challenges encountered during our study include:

• Limited scalability: Nano-AutoGrad performance may degrade when dealing with
large-scale datasets or complex models due to its simplistic implementation.

• Lack of support for advanced operations: The micro-framework may not support
advanced mathematical operations or complex neural network architectures, limiting
its versatility.

• Efficiency trade-offs: Due to its emphasis on simplicity and educational purposes,
Nano-AutoGrad may not be optimized for computational efficiency, leading to po-
tential performance trade-offs.

6.3 Future Directions

Despite its limitations, Nano-AutoGrad opens up avenues for future study and improve-
ments. Some suggestions for future work include:

• Extension of operations and functionalities: Expanding the micro-framework to sup-
port a wider range of mathematical operations, advanced neural network architec-
tures, and additional functionalities. leverage their extensive libraries and optimiza-
tions.

• Real-world applications and case studies: Applying Nano-AutoGrad to real-world
problems and evaluating its performance, robustness, and scalability in various do-
mains.
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7 Chapter Conclusion

In this chapter, we will provide a concise summary of the discussions and conclusions
drawn from our exploration of the Nano-AutoGrad micro-framework.

7.1 Summary of Findings

Summarize the key findings and insights obtained through our analysis and experiments
with Nano-AutoGrad. Emphasize the strengths, limitations, and potential applications of
the micro-framework.

7.2 Contributions

Highlight the contributions made by our research to the field of deep learning and edu-
cation. Discuss the novelty and significance of Nano-AutoGrad as a lightweight autograd
engine for function approximation

7.3 Final Remarks

Conclude the Bachelor/project by reflecting on the overall significance of Nano-AutoGrad.
Discuss its potential impact on the education of neural networks, its role in understanding
autograd engines, and its implications for developing more efficient and accessible deep
learning frameworks.
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