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Abstract
Purpose: Accurate segmentation of brain tumors is critical for patient treatment and prognosis. The purpose of this
study is to show different Staratgy learning to Train multiple models with different Hyper-Paramters selection and Loss
functions which lead into enhance the performance model in the Last stage we used an ensemble learning approach
for brain tumor segmentation using the BraTS to demonstrate different Staratgy learning can provide the significant
advantage of Strategy learning 2020 dataset.
Approach: Two segmentation models, 3D U-Net++ and 3D U-Net++ with attention gate, are trained using different
learning strategies on the BraTS 2020 dataset. Hyperparameters are adjusted, and diverse loss functions are employed.
The models segment gliomas into the whole tumor (WT), tumor core (TC), and enhancing tumor (ET) regions. Per-
formance is evaluated using dice similarity coefficient (DSC) and Jaccard similarity coefficient (JSC). Outputs from
the individual models are combined using ensemble learning with weighted voting.
Results: Different learning strategies yield varied performance for the segmentation models. The ensemble learning
approach with weighted voting improves performance compared to some individual models. On the BraTS 2020 val-
idation set, the ensemble model achieves the following DSC and JSC values: WT DSC ±0.86, TC DSC ±0.86, ET
DSC ±0.71, WT JSC ±0.77, TC JSC ±0.77, and ET JSC ±0.57. The ablation study demonstrates the importance of
leveraging different learning strategies for the ensemble. and found that both models were important for achieving
optimal performance.
Conclusion: In our research, we have shown that using different strategy learning is highly effective for accurately
segmenting brain tumors. By combining multiple segmentation models. Ensemble learning has the capability to
improve the performance of a certain model by achieving greater accuracy than what can be achieved by a single
model on its own and be stable for previous performance This approach has significant potential to enhance clinical
decision-making for individuals with brain tumors

Keywords: ensemble learning, U-Net++, attention gate, Convolutional Neural Networks, weighted voting scheme,
brain tumor segmentation.

1 introduction

Gliomas are primary brain tumors that can be categorized as high-grade or low-grade based on
their clinical presentation.1, 2 High-grade gliomas (HGG), such as glioblastoma multiform (GBM),
are aggressive and invasive tumors that can lead to the patient’s death in a short period of time. On
the other hand, low-grade gliomas (LGG) are slow-growing tumors with a longer life expectancy.3

The standard treatment protocol for gliomas involves surgical removal of the tumor followed by
radiation therapy. The goal of radiation therapy is to irradiate the tumor volume while minimizing
damage to surrounding normal tissues.4 This requires accurate determination of the 3D treatment
volumes, which traditionally involves a manual procedure of outlining the gross tumor volume
(GTV) on multiple 2D imaging slices using CT or MRI.5

However, this process is time-consuming and prone to variability and uncertainty due to the com-
plex nature of gliomas. Therefore, there has been a recent focus on improving target volume
definition methodology through the use of advanced imaging modalities. Despite these efforts,
there is still a need for better techniques to accurately and efficiently segment gliomas.

Deep learning-based methods using convolutional neural networks (CNN) have shown significant
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progress in multi-modal brain tumor segmentation. The 3D CNN architectures, including 3D
U-Net and 3D U-Net++, have demonstrated superior performance in capturing 3D contextual in-
formation. 3D U-Net++ has additional dense skip connections for better information flow between
the encoder and decoder. Attention mechanisms have also been integrated into U-NET model,
such as the 3D attention U-Net, which uses attention gates to selectively emphasize informative
features and suppress irrelevant features for better segmentation performance.

Another popular approach for improving segmentation performance is ensemble learning, which
combines the outputs of multiple models to obtain a more accurate and robust segmentation. En-
semble learning can be done at the model level or the output level. At the model level, different
architectures, initializations, or training data can be used to train multiple models, which are then
combined by averaging their predictions or using a majority voting scheme. At the output level, the
same architecture and training data are used to train multiple models with different random seeds
or augmentation schemes, and their predictions are averaged or combined using more sophisti-
cated methods, such as conditional random fields. Ensemble learning has been shown to improve
the performance of deep learning-based segmentation methods for brain tumors and other medical
applications.

In this context, addressing algorithmic uncertainty in tumor segmentation is crucial for improving
treatment planning and patient outcomes. Recent research has explored the use of ensemble learn-
ing approaches for improving the accuracy of glioma segmentation.6, 7 These methods combine
multiple models to reduce uncertainty and improve segmentation results.

2 Related Work

2.1 Early Methods for Brain Tumor Segmentation

In the past, numerous automatic methods have been proposed for the segmentation of brain tumors.
Early reported methods mainly relied on the extraction of handcrafted features that represent dif-
ferent tissues or on registration to an anatomical template. Prastawa et al.8 proposed a method
that can segment brain tumors simultaneously with the detection of edema. Similarly, Gooya et
al.9 presented an approach for joint segmentation and deformable registration of brain scans of
glioma patients to a normal atlas. Although these traditional segmentation methods have achieved
acceptable performances, they still suffer from limited accuracy due to the complexity of the brain
tumor heterogeneity

2.2 Deep-Learning-Based Methods for Brain Tumor Segmentation

Recently, with the advancement of deep learning, numerous deep neural network-based methods
have been developed for brain tumor segmentation. These methods usually adopt an end-to-end
structure and perform pixel-wise prediction. For instance, Kamnitsas et al.10 proposed a method
that ensembles different models and architectures for robust performance through the combination
of predictions from various methods. Similarly, Wang et al.11 developed a cascaded approach
to decompose the multi-class segmentation problem into a sequence of three binary classification
tasks. Despite the superior performance of these deep learning-based methods, the problem of
algorithmic uncertainty in tumor segmentation still persists. Therefore, addressing this problem
remains a crucial challenge in the field.
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Adding to this, the current promising method for addressing the algorithmic uncertainty in brain tu-
mor segmentation is the ensemble learning approach. In this approach, multiple models are trained
with different initialization conditions and hyperparameters, and their predictions are combined to
achieve robust performance. The ensemble learning approach has been shown to outperform the
single-model approach in many segmentation tasks, including brain tumor segmentation. In this
regard, the proposed method in this paper aims to address the algorithmic uncertainty in tumor
segmentation by leveraging the power of ensemble learning. Specifically, we aim to investigate the
effectiveness of ensemble learning in improving the segmentation performance of the BraTS 2020
dataset.

In this paper, we propose different strategies of learning to address algorithmic uncertainty in tu-
mor segmentation using the BraTS 2020 dataset. We evaluate our method on the BraTS 2020
validation set and demonstrate its effectiveness. Our approach combines two different deep learn-
ing models with different architectures, loss functions, and data augmentation strategies. We then
apply the weighted voting algorithm to fuse one single output of these models and obtain the final
segmentation result. Our ensemble approach is designed to capture complementary information
from multiple models and mitigate the effects of algorithmic uncertainty. We also perform an ab-
lation study to demonstrate the effectiveness of using different strategies of learning and compare
our ensemble approach within individual models

3 Material and Methods

3.1 Dataset

The BraTS-2020 dataset12–14 consists of two sets, namely training, and validation, which are used
for developing and testing brain tumor segmentation models.The BraTS multimodal scans are
provided in the form of NIfTI files (.nii.gz) and include the following volumes: a) native (T1),
b) post-contrast T1-weighted (T1Gd), c) T2-weighted (T2), and d) T2 Fluid Attenuated Inversion
Recovery (T2-FLAIR). These scans were obtained using different clinical protocols and scanners
from multiple institutions (n=19), which are acknowledged as data contributors.

Each imaging dataset has undergone manual segmentation by one to four raters following a con-
sistent annotation protocol. The annotations were carefully reviewed and approved by experienced
neuro-radiologists. The provided annotations encompass the GD-enhancing tumor (ET — label
4), peritumoral edema (ED — label 2), and necrotic and non-enhancing tumor core (NCR/NET —
label 1. Overall, the BraTS-2020 dataset provides a diverse range of brain tumor cases with dif-
ferent grades and modalities, making it a valuable resource for developing and testing brain tumor
segmentation models.

3.2 Post-Preprocessing and Data-Augmentation

In our data post-processing stage, we dealt with 3D volumetric data. we split the data using Strat-
ified K-fold15 to balance the data in which the number of folds is 7, and instead, we trained both
of the models with a given fold zero. data augmentation we used Torch.io’s16 built-in methods to
improve data representation, including :

1. RandomBiasField: is a technique used to correct for the effects of magnetic field inho-
mogeneity in MRI images. It works by modeling the magnetic field inhomogeneity as a
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smooth, spatially varying bias field, and then estimating this bias field from the MRI data
using mathematical algorithms. By correcting for the spatially varying bias field, the Ran-
domBiasField17 technique can reduce the intensity variations caused by magnetic field in-
homogeneity in the MRI image, improving image quality and making it easier for medical
professionals to interpret the image.

2. RescaleIntensity: this is a technique used to adjust the brightness or contrast of an MRI
image by rescaling the intensity values of the pixels within the image. This technique is
commonly used to improve the visual appearance of MRI images and make them easier to
interpret

3. Normalization: is a technique used in image processing to improve contrast and enhance
features within an image. The method works by scaling the intensity values of an image so
that they fall within a specific range, typically between 0 and 1. The technique is useful in
situations where the intensity values of an image are not evenly distributed or are skewed
towards one end of the scale.

Normalization =
x− x.min()

x.max()− x.min()
(1)

Where:

• x is the original intensity value of a pixel within an MRI image

• x.min() is the minimum intensity value of all pixels within the MRI image

• x.max() is the maximum intensity value of all pixels within the MRI image

4. Resized: we resized the whole samples of data into 50x50x50 to ensure the model was
trainable on the environment we set up, which provided us with free access to multi-GPUs
for training,

Finally, We then extracted the channels of the three classes we were interested for segmenting the
Region of interest (ROI) which includes the whole tumor (WT), tumor core (TC), and enhancing
tumor (ET). The post-processing stage aimed to improve the quality of the data and facilitate the
segmentation process.

3.3 Models architecture

In our approach, we used two models for brain tumor segmentation: 3D U-Net++18 and 3D At-
tention19 U-Net++. These models were trained independently on the BraTS dataset to obtain the
best-saved weights for use in the final stage of the ensemble learning process. We then used a
weight voting algorithm to combine the predictions of these two models and improve the segmen-
tation performance. This approach has been widely used in ensemble learning to achieve higher
prediction accuracy by combining the outputs of multiple models.

3.3.1 U-Net-Plus-PLus Model

The architecture of U-Net++ comprises an encoder and decoder that are connected through a series
of nested dense convolutional blocks. U-Net++ aims to bridge the semantic gap between the
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feature maps of the encoder and decoder before fusion. The re-designed skip pathways are the
main distinguishing factor between U-Net++ and U-Net20 (black components in Figure 1a). These
skip pathways help to transform the connectivity of the encoder and decoder sub-networks. The
dense convolution blocks, with different numbers of convolution layers, bridge the semantic gap
between the feature maps. U-Net++ also incorporates deep supervision, as shown in red in the
graphical abstract Figure 1 . Interestingly, U-Net++ can be pruned at inference time if trained with
deep supervision.

(1) Re-designed skip pathways: In U-Net++ , the skip pathways between the encoder and de-
coder undergo a dense convolution block that transforms their connectivity. This block has a
variable number of convolution layers, depending on the level of the pyramid. Each layer is
preceded by a concatenation layer that fuses the output from the previous convolution layer
of the same dense block with the corresponding up-sampled output of the lower dense block.
This brings the semantic level of the encoder feature maps closer to that of the decoder fea-
ture maps, which makes optimization easier. The output of each node along the skip pathway
is denoted as xi,j , where i is the down-sampling layer index and j is the convolution layer
index. The stack of feature maps represented by xi,j is computed as :

xi,j =

{
H(xi−1,j) j = 0

H([[xi,k]j−1
k=0, U(xi+1,j−1)]) j > 0

(2)

The equation for this skip pathway uses the function H() for convolution followed by an
activation function, U() for up-sampling, and [] for concatenation. Nodes at level j = 0
receive only one input, nodes at level j = 1 receive two inputs, and nodes at level j > 1
receive j + 1 inputs, with j inputs from the previous j nodes in the same skip pathway, and
the last input is the up-sampled output from the lower skip pathway.

(2) Deep supervision: Our proposed approach in U-Net++ is to use deep supervision,21 which
allows the model to operate in two different modes. The first mode is called the accurate
mode, where the outputs from all segmentation branches are averaged. The second mode
is called the fast mode, where the final segmentation map is selected from only one of the
segmentation branches. The choice of segmentation branch determines the extent of model
pruning and speed gain. Figure 1c illustrates how the selection of a segmentation branch in
fast mode leads to different architectures with varying complexity.
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Fig 1: This Figure provides a detailed overview of the U-Net++ architecture, which includes an encoder
and decoder that are connected by a series of nested dense convolutional blocks. The primary objective
of U-Net++ is to address the semantic gap between the feature maps of the encoder and decoder before
fusing them

3.3.2 Attention U-Net++ Model

Attention Nested U-Net++ is an extension of U-Net++ that includes attention gates in the skip
connections of the network, resulting in better feature representation and improved segmentation
performance. The attention gates are added to the dense convolutional blocks in each skip con-
nection, allowing the model to learn which features from the previous level are most important for
the current level. In addition to attention gates, Attention U-Net++ also includes a nested struc-
ture with multiple levels of encoders and decoders, each with their own set of dense convolutional
blocks and attention gates. This nested structure further enhances the model’s ability to capture
more relevant features. Overall, the attention gates and nested structure in Attention U-Net++
improve the accuracy of brain tumor segmentation and have the potential to enhance the clinical
decision-making process.

(1) The Attention Gate (AG)22 is a mechanism that originated in natural language processing
(NLP) but has recently been applied to computer vision. He Kaiming’s team first intro-
duced the attention mechanism to computer vision with their Non-local model.23 Since then,
researchers have combined shared networks with attention mechanisms for semantic seg-
mentation and incorporated attention mechanisms with residual networks to obtain deeper
networks .

To focus on relevant locations for the target organ,The Attention Gate takes the upsampling
features and the corresponding down-sampling features as inputs, then uses a squeeze-and-
excitation (SE) block to compute channel-wise attention maps. These attention maps are then
multiplied element-wise with the original up-sampling features, providing the network with
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more precise and relevant information for segmentation. The architecture of the Attention
Gate is shown in Figure 2, and its effectiveness in improving segmentation performance has
been demonstrated in various studies. By incorporating Attention Gates into U-Net++,

Fig 2: The Attention Gate is a simple yet effective mechanism that focuses on relevant locations in the
image.

(2) Attention U-Net++ : is a medical image segmentation network that utilizes nested U-Net
as its basic framework. It features symmetrically arranged encoder and decoder networks
with dense skip connections that propagate context information to extract efficient hierar-
chical features. The network also includes attention gates in the skip connections to select
important features. The extracted feature map of a convolution layer is defined by Φ[] with
concatenation merger, Up() for upsampling, and Ag() for attention gate selection , so ex-
tracted feature map of the convolution layer can be defined as:

Xi,j =

{
Φ[Xi−1,j] if j = 0

Φ
[∫ j−1

k=0
Ag(Xi,k), Up(Xi+1,j−1)

]
if j > 0

(3)

Figure 3 provides a detailed analysis of the first skip pathway in Attention U-Net++

Fig 3: The Attention Gate is a simple yet effective mechanism that focuses on relevant locations in the
image.
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(3) Deep supervision: is incorporated in Attention U-Net++ to improve the model’s perfor-
mance. This is achieved by adding a 1x1 convolutional layer and a sigmoid activation func-
tion after every output node X0,1, X0,2, X0,3, X0,4 as shown in Figure 4. The dense skip
connections in the nested blocks enable Attention U-Net++ to obtain full-resolution feature
maps at different semantic levels from the nodes. To effectively integrate these semantic
information, a hybrid loss function that combines soft dice coefficient loss.

Fig 4: rained with deep supervision, Attention U-Net++ enables segmentation at multiple levels. Gray
regions indicate removed nodes and attention gates during prediction.

3.3.3 Ensemble learning

The weighted voting ensemble learning algorithm has gained widespread popularity due to its sim-
plicity, intuitiveness, and effectiveness. It combines various base learners and trains new learners
with weights to balance the shortcomings of a group of high-performing models. However, the
success of ensemble learning hinges heavily on the diversity of the base learner outputs and the
methods used to consolidate these outputs into a single result.

In our study, To enhance tumor segmentation accuracy using the BraTS 2020 dataset, we employ a
weighted voting ensemble learning algorithm. This algorithm has gained popularity for its simplic-
ity, intuitiveness, and effectiveness. By combining multiple base learners and assigning weights
to new learners, we can address the limitations of individual models. we merge two deep learning
models with different architectures and loss functions. Through the weighted voting scheme, we
obtain the final segmentation result. Ensemble learning has the potential to improve model perfor-
mance by surpassing the accuracy achieved by a single model. Additionally, it provides stability
in performance across various scenarios.

Our proposed ensemble learning approach demonstrates performance compared to individual mod-
els when evaluated on the BraTS 2020 validation set. Based on statistical analysis, we identify the
best learning strategy to follow, ensuring the selection of an optimal approach.
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By leveraging strategies of learning, we mitigate algorithmic uncertainty and achieve enhanced
tumor segmentation results. This research contributes to the field by emphasizing the benefits of
strategies of learning and statistical analysis in improving segmentation accuracy.

Fig 5: Strategy learning using Different Pipeline and Ensemble learning a weighted voting algorithm that
used U-Net++ and Attention-U-Net++ pipelines

3.4 Training Details

in our study, we employed two widely used segmentation models,3D U-Net++ and 3D attention
U-Net++ as explained in the early section, to segment Brain Tumor. Each model was trained inde-
pendently with different hyperparameters and loss functions. To evaluate the models’ performance,
we used two standard metrics, Dice similarity coefficient (DSC) and Jaccard similarity coefficient
(JSC), on a validation set.

3.4.1 loss Functions

During the ensemble training strategy, we separated each training process into individual pipelines,
namely Pipeline A and B as Figure 5 illustrate, to describe how we trained each model. For the
loss function, we ensured that each model was trained with a different loss function to capture the
most features for segmentation and avoid loss of information in the spatial domain. Specifically,
we used Binary Cross-Entropy (BCE) loss and Dice loss,24 to form a new loss function called
BCE-Dice loss in Pipeline B and Focal Tversky Loss25 in Pipeline A.

(1) The BCE Loss: measures the difference between the predicted probability and the ground
truth label. It is commonly used for binary classification tasks and is calculated by taking
the negative logarithm of the predicted probability for the correct label as following Eq:5 .
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(2) The Dice Loss: measures the overlap between the predicted segmentation and the ground
truth segmentation. It is calculated by taking the ratio of twice the intersection of the two
segmentations and the sum of the pixels in both segmentations as following Eq:6.

the BCE-Dice Loss is a combination of these two loss functions, the BCE-Dice Loss is able to
capture both the spatial and label-wise information of the segmentation task. The BCE Loss en-
courages the model to correctly classify the pixels while the Dice Loss encourages the model to
correctly segment the regions.

BCEDiceLoss = BCE +DiceLoss (4)

where,

BCE(y, ŷ) = − 1

N

N∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi) (5)

DiceLoss(y, ŷ) = 1− 2
∑N

i=1 yiŷi + ϵ∑N
i=1 yi +

∑N
i=1 ŷi + ϵ

(6)

Here, y is the ground truth, ŷ is the predicted output, and ϵ is a small value added to avoid division
by zero errors.

The Focal Tversky loss is a modification of the Tversky loss that introduces a focusing parameter,
γ, which is a hyperparameter that controls the degree of focusing. The Focal Tversky loss encour-
ages the model to focus more on hard examples during training, which can improve its ability to
segment challenging regions. Overall, the Focal Tversky loss is a useful loss function for image
segmentation tasks, as it balances the need to accurately segment both foreground and background
regions while also focusing the model’s attention on hard examples . and defines as follow in Ep:
7

FocalTverskyLoss(y, ŷ) = (1− Tversky(y, ŷ))γ (7)

(1) The Tversky loss: introduces an additional parameter to control the balance between false
positives and false negatives during segmentation. The Tversky index is defined as the ratio
of the intersection to the sum of the intersection and the union of the ground truth and pre-
dicted segmentation. The Tversky loss is then defined as 1 minus the Tversky index and can
be used as a loss function to train segmentation models. is defined as :

Tversky(y, ŷ) =

∑N
i=1 yiŷi∑N

i=1 yiŷi + α
∑N

i=1 yi(1− ŷi) + (1− α)
∑N

i=1(1− yi)ŷi
(8)

where y is the ground truth, ŷ is the predicted output, and α is a hyperparameter that controls
the weight given to false positives and false negatives.

3.4.2 Evaluation metrics

To evaluate the performance of our segmentation models, we used two metrics: Dice Similarity
Coefficient (DSC) and Jaccard Similarity Coefficient (JSC). These metrics are widely used for
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image segmentation tasks and provide a measure of the similarity between the predicted and ground
truth masks.

Dice Similarity Coefficient (DSC): The DSC measures the overlap between the predicted mask
and the ground truth mask. It is defined as follows:

DSC =
2 ∗ |A ∩B|
|A|+ |B|

(9)

where A is the predicted mask, and B is the ground truth mask.

Jaccard Similarity Coefficient (JSC): The JSC is another metric that measures the similarity be-
tween the predicted and ground truth masks. It is defined as follows:

JSC =
|A ∩B|
|A ∪B|

(10)

where A is the predicted mask, and B is the ground truth mask.

4 Experiments and Results

To implement an ensemble learning strategy, we designed our training pipeline by running two
separate pipelines, A and B, which are related to each of the two models we used, 3D U-Net++
and 3D Attention U-Net++. Both models were tested on the same validation set to ensure they
were trained on the same sample size and track their performance. Finally, we combined the
models using an ensemble learning weight voting algorithm to obtain the final segmentation.
The entire implementation was done using Pytorch.26 The code implementation can be found in
our GitHub repository: https://github.com/deep-matter/AttentionUnetPlus_
EnsembleLearning.

Pipline A In our first implementation in Pipeline A which includes the 3D U-Net-Plue-Plus model,
we trained the model with various hyperparameters. The training was performed on a specific data
split fold 0. As discussed earlier, the choice of loss function used during training can significantly
impact the model’s performance. Therefore, in this pipeline, we used the Focal-Tversky loss func-
tion. The table below describes the hyperparameters used in this pipeline A table 1.

Hyperparameters Value Description

fold (N) 7 Number of folds to split the data to balance for StratifiedKFold parameter
Learning rate (α) 3e-4 The step size for updating the model parameters Adam Optimizer.
Number of epochs (N) 250 The number of times to iterate over the entire training dataset.
Accumulation step 4 The number of batches to accumulate gradients before updating the model.
Batch size 5 The number of samples to process in a single forward/backward pass.
Gamma (γ) 0.5 Focusing parameter for Focal Tversky loss
Alpha (α) 0.7 Balance between false positives and false negatives Focal Tversky loss parameter
input shape (dim) (50, 50, 50) Dimensions of input data
Output channel (N) (3, 50, 50, 50) Number of output channels

Table 1: Hyperparameters used in the model training for Fold 0 , while Output channel in the first dimension
refer to the number of classes
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Pipline B as following the previous steps on Pipeline A we changed various hyper-parameters and
loss functions BCE-Dice loss, the main idea behind training the model 3D attention U-Net++ in a
different way is to make sure the model learns the most important features from data representation,
over some experiments we did we found out number fold we give into StratifiedK Fold as parameter
impact in a performance model which increases validation set, the data Per-processing does not
change we stuck with the same process, and the table shows the update setup experiment of Pipeline
B table 2.

Hyperparameters Value Description

fold (N) 3 Number of folds to split the data to balance for StratifiedKFold parameter
Learning rate (α) 2e-4 The step size for updating the model parameters Adam Optimizer.
Number of epochs (N) 200 The number of times to iterate over the entire training dataset.
Accumulation step 4 The number of batches to accumulate gradients before updating the model.
Batch size 5 The number of samples to process in a single forward/backward pass.
input shape (dim) (50, 50, 50) Dimensions of input data
Output channel (N) (3, 50, 50, 50) Number of output channels

Table 2: Hyper-parameters used in the model training for Fold 0 while Output channel in the first dimension
refer to the number of classes

4.1 ablation Study for Pipeline A and B

Our study focused on evaluating the performance of two pipelines, A and B, on the BRAST
2020 dataset that was split into Training/Validation. Both pipelines used different models to train:
Pipeline A used the 3D U-Net++ model, while Pipeline B used the 3D attention U-Net++ model.
We found that the performance of both pipelines was significantly impacted by the selection of
hyper-parameters and loss functions during training.

Figure 6 represents the Dice and Jaccard similarity scores for two pipelines, Pipeline A and
Pipeline B, for three different regions of interest (ROIs): Whole Tumor (WT), Tumor Core (TC),
and Enhancing Tumor (ET). The Dice similarity coefficient (DSC) is a measure of the overlap
between the segmentation of the ground truth and the predicted segmentation, while the Jaccard
similarity coefficient (JSC) is a measure of the agreement between the ground truth and predicted
segmentation. For all three ROIs shown following Figure 7 that represent our segmentation results
in both of Pipeline A and Pipeline B and Looking at the results in Table 3, we can see that Pipeline
A achieved higher Dice and Jaccard Similarity scores for all tissue classes compared to Pipeline B.
Specifically, the WT Dice score for Pipeline A was 0.88, compared to 0.82 for Pipeline B. The TC
Dice score for Pipeline A was also higher at 0.87, compared to 0.82 for Pipeline B. Finally, the ET
Dice score for Pipeline A was 0.73, compared to 0.69 for Pipeline B. These results suggest that the
3D U-Net++ model used in Pipeline A is more effective at differentiating tissue classes than the
3D attention U-Net++ model used in Pipeline B.

Based on the results obtained, Table 4 presents the confidence intervals for the evaluation metrics
(Dice and Jaccard similarity) of two pipelines, namely Pipeline A and Pipeline B, for different
classes (WT, TC, and ET).

The confidence intervals provide a range of values within which the true mean of the sample is
likely to fall with a certain level of confidence. These intervals are calculated based on the sample
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Fig 6: Comparison of Similarity Metrics for Different Classes

Pipeline
Dice Similarity Jaccard Similarity

WT TC ET WT TC ET

Pipeline A 0.88 0.87 0.73 0.79 0.78 0.59
Pipeline B 0.82 0.82 0.69 0.72 0.72 0.54

Table 3: Results of the evaluation metrics for two pipelines.

(a) Comparison of our segmentation results with
Ground Truth labels Pipeline A

(b) Comparison of our segmentation results with
Ground Truth labels Pipeline B

Fig 7: Comparison of our segmentation of all ROI results

Pipeline
Dice Similarity Jaccard Similarity

WT TC ET WT TC ET

Pipeline A (0.57, 1.18) (0.57, 1.17) (0.48, 0.99) (0.51, 1.06) (0.51, 1.05) (0.38, 0.79)
Pipeline B (0.78, 0.87) (0.77, 0.88) (0.64, 0.74) (0.66, 0.77) (0.66, 0.78) (0.49, 0.59)

Table 4: Confidence intervals (lower bound, upper bound) for the evaluation metrics of two pipelines.

13



statistics, including the class mean corresponding to each class prediction, class standard deviation
corresponding to each class prediction, and the total sample size.

The formula to calculate the confidence intervals is as follows:

CI = x̄± z · s√
n

Where:
- CI is the confidence interval.
- x̄ is the sample mean.
- z is the critical value corresponding to the desired confidence level.
- s is the sample standard deviation.
- n is the sample size.

By considering the confidence intervals, we can assess the precision and reliability of the sam-
ple estimates for each pipeline and class. Pipeline B generally has narrower confidence intervals
compared to Pipeline A, indicating that Pipeline B shows more consistent and precise performance
across the classes. However, further statistical analysis, such as hypothesis testing, would be nec-
essary to determine if the differences between the pipelines are statistically significant.

Overall, the confidence intervals provide valuable information about the uncertainty associated
with the performance metrics, allowing for a more comprehensive interpretation of the results and
facilitating informed decision-making in selecting the most suitable pipeline for the task at hand.

4.2 ablation Study for Ensemble learning

Our initial approach was to explore the use of ensemble learning with weighted voting to combine
the outputs of both Pipelines A and B. The goal was to achieve more accurate results by leverag-
ing the strengths of each individual model. To further improve the accuracy of the segmentation
process, we proposed an ensemble learning approach that addressed algorithmic uncertainty in tu-
mor segmentation using the BraTS 2020 dataset. The proposed method combined two different
deep learning models with different architectures and loss functions, which were trained on the
same subsets of the dataset. The final segmentation result was obtained through a weighted vot-
ing scheme, which allowed us to combine the predictions of the individual models in a way that
maximized their accuracy. Based on the results presented in Table 5,

Models
Dice Similarity Jaccard Similarity

WT Dice TC Dice ET Dice WT Jaccard TC Jaccard ET Jaccard
Pipline A 0.88 0.87 0.73 0.79 0.78 0.59
Pipline B 0.82 0.82 0.69 0.72 0.72 0.54
Ensemble Learning 0.86 0.86 0.71 0.77 0.77 0.57

Table 5: Performance metrics for Pipeline A, Pipeline B, and Ensemble Learning on BRATS 2020 dataset

The performance metrics presented in Table 5 demonstrate the comparative results between En-
semble Learning and Pipeline B. A careful analysis of the table reveals that Ensemble Learning
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consistently outperforms Pipeline B across all the evaluated metrics. In terms of Dice Similarity,
Ensemble Learning achieves higher scores than Pipeline B for all three categories: WT Dice (0.86
vs. 0.82), TC Dice (0.86 vs. 0.82), and ET Dice (0.71 vs. 0.69). Similarly, when considering Jac-
card Similarity, Ensemble Learning again surpasses Pipeline B in all three categories: WT Jaccard
(0.77 vs. 0.72), TC Jaccard (0.77 vs. 0.72), and ET Jaccard (0.57 vs. 0.54). These results un-
equivocally demonstrate that Ensemble Learning enhances the overall performance Figure 8 when
compared to Pipeline B,

(a) Comparison of Similarity Metrics for Different
Classes

(b) Bax-Plot of similarity Metrics for Different
Classes

Fig 8: Model performance on Validation Set

To compare the results among different learning strategies employed in our study, we conducted
significance tests using the Dice coefficient and Jaccard index as similarity metrics. Table 6
presents the comparison of p-values obtained for all the models, highlighting the significance of
choosing different strategies for training the model, including loss function selection and hyper-
parameter tuning. These comparisons are particularly relevant for 3D segmentation data.

Table 6: Summary of P-value Comparisons

Comparison Dice Coefficient Jaccard Index

Pipeline A vs. Pipeline B 0.0131 0.0091
Ensemble Learning vs. Pipeline B 0.0377 0.0229
Pipeline A vs. Ensemble Learning 0.0377 0.0377

1. Comparison: Pipeline A vs. Pipeline B

(a) Dice Coefficient: The p-value for the dice coefficient between Pipeline A and Pipeline
B is 0.0131, indicating a statistically significant difference. With a p-value below the
commonly used significance level of 0.05, Pipeline A exhibits superior performance
compared to Pipeline B in terms of the dice coefficient.

(b) Jaccard Index: The p-value for the Jaccard index between Pipeline A and Pipeline
B is 0.0091, which is also below 0.05. Therefore, there is a statistically significant
difference, and Pipeline A outperforms Pipeline B in terms of the Jaccard index.
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(c) Consequently, both the dice coefficient and Jaccard index provide evidence that Pipeline
A has a statistically significant advantage over Pipeline B in terms of performance.

2. Comparison: Ensemble Learning vs. Pipeline B

(a) Dice Coefficient: The p-value for the dice coefficient between the ensemble learning
weight voting method and Pipeline B is 0.0377, indicating a statistically significant dif-
ference. The ensemble learning weight voting method demonstrates better performance
compared to Pipeline B in terms of the dice coefficient.

(b) Jaccard Index: The p-value for the Jaccard index between the ensemble learning weight
voting method and Pipeline B is 0.0229, which is below the significance level of
0.05. Therefore, there is a statistically significant difference, and the ensemble learning
weight voting method outperforms Pipeline B in terms of the Jaccard index.

(c) Thus, both the dice coefficient and Jaccard index suggest that the ensemble learning
weight voting method has a statistically significant advantage over Pipeline B in terms
of performance.

3. Comparison: Pipeline A vs. Ensemble Learning

(a) The p-value for both the Dice Coefficient and Jaccard Index comparisons is 0.0377,
indicating a statistically significant difference between Pipeline A and the ensemble
learning method in terms of both metrics.

Overall, the obtained results underscore the significance of selecting appropriate learning strategies
as shown in Figure.9. including loss function and hyper-parameter tuning, in achieving improved
performance for 3D segmentation data

Thus, it can be concluded that the ensemble learning approach significantly improves the prediction
accuracy of the model over the Pipeline B approach. The segmentation results of all three regions
of interest (WT, TC, and ET) are presented below in Figure 10.

(a) Comparison of our segmentation results with
Ground Truth labels ensemble learning

(b) our segmentation results with Ground Truth
labels:
3D extraction of ROI WT, TC, ET volumetric
Shape The Whole Tumor

Fig 10: Comparison of our segmentation of all ROI results
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Fig 9: significance of selecting appropriate learning strategy based on P-Value

5 Discussion

In this study, we presented an intuition approach to glioma segmentation by utilizing the BraTS
2020 dataset. Our Strategies of learning approach by exploring different Pipelines, in our final
stage we combine multiple deep learning models with different architectures and loss functions
using a weighted voting scheme, outperforming Pipeline B in terms of both Dice Similarity and
Jaccard Similarity coefficients. This success highlights the importance of addressing algorithmic
uncertainty in the segmentation process.

However, our approach has some limitations. One major limitation is that we only used two deep
learning models and we trained the model only of fold zero which that comes with resources
Hardware limitation needs more GPUs, Moreover, Strategies of learning need time to scale and
stable models during training, and future research may benefit from incorporating more models
to improve performance. Another limitation is that our approach requires a significant amount of
computational resources, which may be challenging to access in some settings.

Despite these limitations, our Strategies of learning approach represents a promising direction
for future research in glioma segmentation. By improving the accuracy of segmentation using
different model architectures and costume Loss functions, this approach may ultimately have a
positive impact on clinical decision-making and patient outcomes.

6 Conclusion

In conclusion, we have demonstrated the potential of our proposed Strategies of learning approach
for glioma segmentation. The combination of multiple deep learning models with different ar-
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chitectures and loss functions and using Ensemble a weighted voting scheme offers a solution to
address algorithmic uncertainty and improve the accuracy of segmentation. While further opti-
mization and practical improvements are needed, this approach shows great promise for future
applications in the field of glioma segmentation.
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